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Accuracy is not enough when you’re developing machine learning systems for consequential
application domains. You also need to make sure that your models are fair, have not been
tampered with, will not fall apart in different conditions, and can be understood by people. Your
design and development process has to be transparent and inclusive. You don’t want the systems
you create to be harmful, but to help people flourish in ways they consent to. All of these
considerations beyond accuracy that make machine learning safe, responsible, and worthy of our
trust have been described by many experts as the biggest challenge of the next five years. I hope
this book equips you with the thought process to meet this challenge.

This book is most appropriate for project managers, data scientists, and other practitioners in high-
stakes domains who care about the broader impact of their work, have the patience to think about
what they’re doing before they jump in, and do not shy away from a little math.

In writing the book, I have taken advantage of the dual nature of my job as an applied data
scientist part of the time and a machine learning researcher the other part of the time. Each
chapter focuses on a different use case that technologists tend to face when developing algorithms
for financial services, health care, workforce management, social change, and other areas. These
use cases are fictionalized versions of real engagements I’ve worked on. The contents bring in the
latest research from trustworthy machine learning, including some that I’ve personally conducted
as a machine learning researcher.

—Kush

Kush R. Varshney is a distinguished research staff member at IBM Research
– T. J. Watson Research Center where he leads the machine learning group
in the Foundations of Trustworthy AI department and co-directs the IBM
Science for Social Good initiative. He has invented several new methods in
the fairness, interpretability, robustness, transparency, and safety of machine
learning systems and applied them with numerous private corporations and
social change organizations. His team developed the AI Fairness 360, AI
Explainability 360, and Uncertainty Quantification 360 open-source toolkits.
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Preface 
Decision making in high-stakes applications, such as educational assessment, credit, employment, 
health care, and criminal justice, is increasingly data-driven and supported by machine learning 
models. Machine learning models are also enabling critical cyber-physical systems such as self-
driving automobiles and robotic surgery. Recommendations of content and contacts on social media 
platforms are determined by machine learning systems. 

Advancements in the field of machine learning over the last several years have been nothing short 
of amazing. Nonetheless, even as these technologies become increasingly integrated into our lives, 
journalists, activists, and academics uncover characteristics that erode the trustworthiness of these 
systems. For example, a machine learning model that supports judges in pretrial detention decisions 
was reported to be biased against black defendants. Similarly, a model supporting resume screening 
for employment at a large technology company was reported to be biased against women. Machine 
learning models for computer-aided diagnosis of disease from chest x-rays were shown to give 
importance to markers contained in the image, rather than details of the patients’ anatomy. Self-
driving car fatalities have occurred in unusual confluences of conditions that the underlying machine 
learning algorithms had not been trained on. Social media platforms have knowingly and 
surreptitiously promoted harmful content. In short, while each day brings a new story of a machine 
learning algorithm achieving superhuman performance on some task, these marvelous results are 
only in the average case. The reliability, safety, security, and transparency required for us to trust these 
algorithms in all cases remains elusive. As a result, there is growing popular will to have more fairness, 
robustness, interpretability, and transparency in these systems. 

They say “history doesn't repeat itself, but it often rhymes.” We have seen the current state of 
affairs many times before with technologies that were new to their age. The 2016 book Weapons of Math 
Destruction by Cathy O’Neil, catalogs numerous examples of machine learning algorithms gone amok. 
In the conclusion, O’Neil places her work in the tradition of Progressive Era muckrakers Upton Sinclair 
and Ida Tarbell. Sinclair's classic 1906 book The Jungle tackled the processed food industry. It helped 
spur the passage of the Federal Meat Inspection Act and the Pure Food and Drug Act, which together 
regulated that all foods must be cleanly prepared and free from adulteration.  

In the 1870s, Henry J. Heinz started one of the largest food companies in the world today. At a time 
when food companies were adulterating their products with wood fibers and other fillers, Heinz 
started selling horseradish, relishes, and sauces made of natural and organic ingredients. Heinz 
offered these products in transparent glass containers when others were using dark containers. His 
company innovated processes for sanitary food preparation, and was the first to offer factory tours that 
were open to the public. The H. J. Heinz Company lobbied for the passage of the aforementioned Pure 
Food and Drug Act, which became the precursor to regulations for food labels and tamper-resistant 
packaging. These practices increased trust and adoption of the products. They provided Heinz a 
competitive advantage, but also advanced industry standards and benefited society. 

And now to the rhyme. What is the current state of machine learning and how do we make it more 
trustworthy? What are the analogs to natural ingredients, sanitary preparation, and tamper-resistant 
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packages? What are machine learning's transparent containers, factory tours, and food labels? What is 
the role of machine learning in benefiting society? 

The aim of this book is to answer these questions and present a unified perspective on trustworthy 
machine learning. There are several excellent books on machine learning in general from various 
perspectives. There are also starting to be excellent texts on individual topics of trustworthy machine 
learning such as fairness1 and explainability.2 However, to the best of my knowledge, there is no single 
self-contained resource that defines trustworthy machine learning and takes the reader on a tour of all 
the different aspects it entails. 

I have tried to write the book I would like to read if I were an advanced technologist working in a 
high-stakes domain who does not shy away from some applied mathematics. The goal is to impart a 
way of thinking about putting together machine learning systems that regards safety, openness, and 
inclusion as first-class concerns. We will develop a conceptual foundation that will give you the 
confidence and a starting point to dive deeper into the topics that are covered.  

“Many people see computer scientists as builders, as engineers, but I think there’s a 
deeper intellectual perspective that many CS people share, which sees computation 
as a metaphor for how we think about the world.” 

—Suresh Venkatasubramanian, computer scientist at Brown University 

We will neither go into extreme depth on any one topic nor work through software code examples, but 
will lay the groundwork for how to approach real-world development. To this end, each chapter 
contains a realistic, but fictionalized, scenario drawn from my experience that you might have already 
faced or will face in the future. The book contains a mix of narrative and mathematics to elucidate the 
increasingly sociotechnical nature of machine learning and its interactions with society. The contents 
rely on some prior knowledge of mathematics at an undergraduate level as well as statistics at an 
introductory level.3 

“If you want to make a difference, you have to learn how to operate within imperfect 
systems. Burning things down rarely works. It may allow for personal gains. But if 
you care about making the system work for many, you have to do it from the 
inside.” 

—Nadya Bliss, computer scientist at Arizona State University 

The topic of the book is intimately tied to social justice and activism, but I will primarily adopt the 
Henry Heinz (developer) standpoint rather than the Upton Sinclair (activist) standpoint. This choice is 

 

 
1Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning: Limitations and Opportunities. URL: 
https://fairmlbook.org, 2020. 
2Christoph Molnar. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. URL: 
https://christophm.github.io/interpretable-ml-book, 2019. 
3A good reference for mathematical background is: Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. Mathematics for 
Machine Learning. Cambridge, England, UK: Cambridge University Press, 2020.  
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not meant to disregard or diminish the essential activist perspective, but represents my perhaps naïve 
technological solutionist ethos and optimism for improving things from the inside. Moreover, most of 
the theory and methods described herein are only small pieces of the overall puzzle for making 
machine learning worthy of society’s trust; there are procedural, systemic, and political interventions 
in the sociotechnical milieu that may be much more powerful. 

This book stems from my decade-long professional career as a researcher working on high-stakes 
applications of machine learning in human resources, health care, and sustainable development as 
well as technical contributions to fairness, explainability, and safety in machine learning and decision 
theory. It draws on ideas from a large number of people I have interacted with over many years, filtered 
through my biases. I take responsibility for all errors, omissions, and misrepresentations. I hope you 
find it useful in your work and life. 



x 

 



 Establishing Trust | 1 

1  
Establishing Trust 

Artificial intelligence is the study of machines that exhibit traits associated with a human mind such as 
perception, learning, reasoning, planning, and problem solving. Although it had a prior history under 
different names (e.g. cybernetics and automata studies), we may consider the genesis of the field of 
artificial intelligence to be the Dartmouth Summer Research Project on Artificial Intelligence in the 
summer of 1956. Soon thereafter, the field split into two camps: one focused on symbolic systems, 
problem solving, psychology, performance, and serial architectures, and the other focused on 
continuous systems, pattern recognition, neuroscience, learning, and parallel architectures.1 This 
book is primarily focused on the second of the two partitions of artificial intelligence, namely machine 
learning.  

The term machine learning was popularized in Arthur Samuel’s description of his computer system 
that could play checkers,2 not because it was explicitly programmed to do so, but because it learned 
from the experiences of previous games. In general, machine learning is the study of algorithms that 
take data and information from observations and interactions as input and generalize from specific 
inputs to exhibit traits of human thought. Generalization is a process by which specific examples are 
abstracted to more encompassing concepts or decision rules. 

One can subdivide machine learning into three main categories: (1) supervised learning, (2) 
unsupervised learning, and (3) reinforcement learning. In supervised learning, the input data includes 
observations and labels; the labels represent some sort of true outcome or common human practice in 
reacting to the observation. In unsupervised learning, the input data includes only observations. In 
reinforcement learning, the inputs are interactions with the real world and rewards accrued through 
those actions rather than a fixed dataset. 

 

 
1Allen Newell. “Intellectual Issues in the History of Artificial Intelligence.” In: The Study of Information: Interdisciplinary Messages. 
Ed. by Fritz Machlup and Una Mansfield. New York, New York, USA: John Wiley & Sons, 1983, pp. 187–294. 
2A. L. Samuel. “Some Studies in Machine Learning Using the Game of Checkers.” In: IBM Journal of Research and Development 3.3 
(Jul. 1959), pp. 210–229. 
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The applications of machine learning may be divided into three broad categories: (1) cyber-
physical systems, (2) decision sciences, and (3) data products. Cyber-physical systems are engineered 
systems that integrate computational algorithms and physical components, e.g. surgical robots, self-
driving cars, and the smart grid. Decision sciences applications use machine learning to aid people in 
making important decisions and informing strategy, e.g. pretrial detention, medical treatment, and 
loan approval. Data products applications are the use of machine learning to automate informational 
products, e.g. web advertising placement and media recommendation. These settings vary widely in 
terms of their interaction with people, the scale of data, the time scale of operation and consequence, 
and the severity of consequences. Trustworthy machine learning is important in all three application 
categories, but is typically more pronounced in the first two categories: cyber-physical systems and 
decision sciences. In data products applications, trustworthy machine learning contributes to a 
functioning non-violent society. 

Just a few years ago, the example applications in all of the categories would have been unheard of. 
In recent years, however, machine learning has achieved superlative performance on several 
narrowly-defined tasks across domains (often surpassing the abilities of human experts on those same 
tasks) and invaded the popular imagination due to the confluence of three factors: data, algorithms, 
and computation. The amount of data that is captured digitally and thus available to machine learning 
algorithms has increased exponentially. Algorithms such as deep neural networks have been 
developed to generalize well from that data. Computational paradigms such as graphical processing 
units and cloud computing have allowed machine learning algorithms to tractably learn from very 
large datasets. 

The end result is that machine learning has become a general purpose technology that can be used 
in many different application domains for many different uses. Like other general purpose 
technologies before it,3 such as the domestication of plants, the wheel, and electricity, machine 
learning is starting to remake all parts of society. In some parts of the world, machine learning already 
has an incipient role in every part of our lives, including health and wellness, law and order, 
commerce, entertainment, finance, human capital management, communication, transportation, and 
philanthropy. 

Despite artificial intelligence’s promise to reshape different sectors, there has not yet been wide 
adoption of the technology except in certain pockets such as electronic commerce and media. Like 
other general purpose technologies, there are many short-term costs to the changes required in 
infrastructure, organizations, and human capital.4 In particular, it is difficult for many businesses to 
collect and curate data from disparate sources. Importantly, corporations do not trust artificial 
intelligence and machine learning in critical enterprise workflows because of a lack of transparency 
into the inner workings and a potential lack of reliability. For example, a recent study of business 

 

 
3List of general purpose technologies: domestication of plants, domestication of animals, smelting of ore, wheel, writing, 
bronze, iron, waterwheel, three-masted sailing ship, printing, steam engine, factory system, railway, iron steamship, internal 
combustion engine, electricity, motor vehicle, airplane, mass production, computer, lean production, internet, biotechnology, 
nanotechnology. Richard G. Lipsey, Kenneth I. Carlaw, and Clifford T. Bekar. Economic Transformations. Oxford, England, UK: 
Oxford University Press, 2005. 
4Brian Bergstein. “This Is Why AI Has Yet to Reshape Most Businesses.” In: MIT Technology Review (Feb. 2019). URL: 
https://www.technologyreview.com/s/612897/this-is-why-ai-has-yet-to-reshape-most-businesses. 
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decision makers found that only 21% of them have a high level of trust in different types of analytics;5 
the number is likely smaller for machine learning, which is a part of analytics in business parlance. 

“A decision aid, no matter how sophisticated or ‘intelligent’ it may be, may be 
rejected by a decision maker who does not trust it, and so its potential benefits to 
system performance will be lost.” 

—Bonnie M. Muir, psychologist at University of Toronto 

This book is being written at a juncture in time when there is a lot of enthusiasm for machine 
learning. It is also a time when many societies are reckoning with social justice. Many claim that it is 
the beginning of the age of artificial intelligence, but others are afraid of impending calamity. The 
technology is poised to graduate from the experimental sandboxes of academic and industrial 
laboratories to truly widespread adoption across domains, but only if the gap in trust can be overcome.  

I restrain from attempting to capture the zeitgeist of the age, but provide a concise and self-
contained treatment of the technical aspects of machine learning. The goal is not to mesmerize you, 
but to get you to think things through.6 There is a particular focus on mechanisms for increasing the 
trustworthiness of machine learning systems. As you’ll discover throughout the journey, there is no 
single best approach toward trustworthy machine learning applicable across all applications and 
domains. Thus, the text focuses on helping you develop the thought process for weighing the different 
considerations rather than giving you a clear-cut prescription or recipe to follow. Toward this end, I 
provide an operational definition of trust in the next section and use it as a guide on our conceptual 
development of trustworthy machine learning. I tend to present evergreen concepts rather than 
specific tools and tricks that may soon become dated. 

 

1.1 Defining Trust 
What is trust and how do we operationalize it for machine learning? 

“What is trust? I could give you a dictionary definition, but you know it when you 
feel it. Trust happens when leaders are transparent, candid, and keep their word. 
It’s that simple.” 

—Jack Welch, CEO of General Electric 

It is not enough to simply be satisfied by: ‘you know it when you feel it.’ The concept of trust is defined 
and studied in many different fields including philosophy, psychology, sociology, economics, and 
organizational management. Trust is the relationship between a trustor and a trustee: the trustor trusts 
the trustee. A definition of trust from organizational management is particularly appealing and 

 

 
5Maria Korolov. “Explainable AI: Bringing Trust to Business AI Adoption.” In: CIO (Sep. 2019). URL: 
https://www.cio.com/article/3440071/explainable-ai-bringing-trust-to-business-ai-adoption.html. 
6The curious reader should research the etymology of the word ‘mesmerize.’  
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relevant for defining trust in machine learning because machine learning systems in high-stakes 
applications are typically used within organizational settings. Trust is the willingness of a party to be 
vulnerable to the actions of another party based on the expectation that the other will perform a particular action 
important to the trustor, irrespective of the ability to monitor or control that other party.7 This definition can 
be put into practice as a foundation for desiderata of machine learning systems. 

1.1.1 Trusted vs. Trustworthy 
Embedded within this definition is the idea that the trustee has certain properties that make it 
trustworthy, i.e. the qualities by which the trustor can expect the trustee to perform the important 
action referred to in the definition of trust. Being trustworthy does not automatically imply that the 
trustee is trusted. The trustor must consciously make a decision to be vulnerable to the trustee based 
on its trustworthiness and other factors including cognitive biases of the trustor. Understandably, 
potential trustors who are already vulnerable as members of marginalized groups may not want to 
become even more vulnerable. A system may not be trusted no matter how worthy of trust it is. 

“The toughest thing about the power of trust is that it’s very difficult to build and 
very easy to destroy.” 

—Thomas J. Watson, Sr., CEO of IBM 

Moreover, the trustor’s expectation of the trustee can evolve over time, even if the trustworthiness 
of the trustee remains constant. A typical dynamic of increasing trust over time begins with the 
trustor’s expectation of performance being based on (1) the predictability of individual acts, moves onto 
(2) expectation based on dependability captured in summary statistics, finally culminating in (3) the 
trustor’s expectation of performance based on faith that dependability will continue in the future.8 
Predictability could arise from some sort of understanding of the trustee by the trustor (for example 
their motivations or their decision-making procedure) or by low variance in the trustee’s behavior. The 
expectation referred to in dependability is the usual notion of expectation in probability and statistics. 

In much of the literature on the topic, both the trustor and the trustee are people. For our purposes, 
however, an end-user or other person is the trustor and the machine learning system is the trustee. 
Although the specifics may differ, there are not many differences between a trustworthy person and a 
trustworthy machine learning system. However, the final trust of the trustor, subject to cognitive 
biases, may be quite different for a human trustee and machine trustee depending on the task.9 

1.1.2 Attributes of Trustworthiness 
Building upon the above definition of trust and trustworthiness, you can list many different attributes 
of a trustworthy person: availability, competence, consistency, discreetness, fairness, integrity, loyalty, 

 

 
7Roger C. Mayer, James H. Davis, and F. David Schoorman. “An Integrative Model of Organizational Trust.” In: Academy of Man-
agement Review 20.3 (Jul. 1995), pp. 709–734. 
8John K. Rempel, John G. Holmes, and Mark P. Zanna. “Trust in Close Relationships.” In: Journal of Personality and Social Psychol-
ogy 49.1 (Jul. 1985), pp. 95–112. 
9Min Kyung Lee. “Understanding Perception of Algorithmic Decisions: Fairness, Trust, and Emotion in Response to Algorith-
mic Management.” In: Big Data & Society 5.1 (Jan.–Jun. 2018). 
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openness, promise fulfilment, and receptivity to name a few.10 Similarly, you can list several attributes 
of a trustworthy information system, such as: correctness, privacy, reliability, safety, security, and 
survivability.11 The 2019 International Conference on Machine Learning (ICML) listed the following 
topics under trustworthy machine learning: adversarial examples, causality, fairness, interpretability, 
privacy-preserving statistics and machine learning, and robust statistics and machine learning. The 
European Commission’s High Level Expert Group on Artificial Intelligence listed the following 
attributes: lawful, ethical, and robust (both technically and socially). 

Such long and disparate lists give us some sense of what people deem to be trustworthy 
characteristics, but are difficult to use as anything but a rough guide. However, we can distill these 
attributes into a set of separable sub-domains that provide an organizing framework for 
trustworthiness. Several pieces of work converge onto a nearly identical set of four such separable 
attributes; a selected listing is provided in Table 1.1. The first three rows of Table 1.1 are attributes of 
trustworthy people. The last two rows are attributes of trustworthy artificial intelligence. Importantly, 
through separability, it is implied that each of the qualities is conceptually different and we can 
examine each of them in isolation of each other. 

Table 1.1. Attributes of trustworthy people and artificial intelligence systems. 

 Source Attribute 1 Attribute 2 Attribute 3 Attribute 4 

trustworthy 
people 

Mishra12 competent reliable open concerned 

Maister et al.13 credibility reliability intimacy 
low self-
orientation 

Sucher and 
Gupta14 

competent 
use fair means 
to achieve its 
goals 

take responsi-
bility for all its 
impact 

motivated to 
serve others’ 
interests as 
well as its own 

trustworthy 
artificial 
intelligence 

Toreini et al.15 ability integrity predictability benevolence 
Ashoori and 
Weisz16 

technical 
competence 

reliability 
understandabil-
ity 

personal at-
tachment 

 

 
10Graham Dietz and Deanne N. Den Hartog. “Measuring Trust Inside Organisations.” In: Personnel Review 35.5 (Sep. 2006), pp. 
557–588. 
11Fred B. Schneider, ed. Trust in Cyberspace. Washington, DC, USA: National Academy Press, 1999. 
12Aneil K. Mishra. “Organizational Responses to Crisis: The Centrality of Trust.” In: Trust in Organizations. Ed. by Roderick M. 
Kramer and Thomas Tyler. Newbury Park, California, USA: Sage, 1996, pp. 261–287. 
13David H. Maister, Charles H. Green, and Robert M. Galford. The Trusted Advisor. New York, New York, USA: Touchstone, 2000. 
14Sandra J. Sucher and Shalene Gupta. “The Trust Crisis.” In: Harvard Business Review (Jul. 2019). URL: https://hbr.org/cover-
story/2019/07/the-trust- crisis. 
15Ehsan Toreini, Mhairi Aitken, Kovila Coopamootoo, Karen Elliott, Carlos Gonzalez Zelaya, and Aad van Moorsel. “The Rela-
tionship Between Trust in AI and Trustworthy Machine Learning Technologies.” In: Proceedings of the ACM Conference on Fairness, 
Accountability, and Transparency. Barcelona, Spain, Jan. 2020, pp. 272–283. 
16Maryam Ashoori and Justin D. Weisz. “In AI We Trust? Factors That Influence Trustworthiness of AI-Infused Decision-
Making Processes.” arXiv:1912.02675, 2019. 
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1.1.3 Mapping Trustworthy Attributes to Machine Learning 
Interpreting the attributes of trustworthiness from the table in the context of machine learning is the 
primary thread of this book. In particular, we take Attribute 1 (competence) to be basic performance 
such as the accuracy of a machine learning model. Good performance, appropriately quantified based 
on the specifics of the problem and application,17 is a necessity to be used in any real-world task.  

We take Attribute 2 to include the reliability, safety, security and fairness of machine learning 
models and systems. Machine learning systems need to maintain good and correct performance 
across varying operating conditions. Different conditions could come from natural changes in the 
world or from malevolent or benevolent human-induced changes. 

We take Attribute 3 to consist of various aspects of openness and human interaction with the 
machine learning system. This includes communication from the machine to the human through 
comprehensibility of models by people as well as transparency into overall machine learning system 
pipelines and lifecycles. It also includes communication from the human to the machine to supply 
personal and societal desires and values. 

We take Attribute 4 (selflessness) to be the alignment of the machine learning system’s purpose 
with a society’s wants. The creation and development of machine learning systems is not independent 
of its creators. It is possible for machine learning development to go in a dystopian direction, but it is 
also possible for machine learning development to be intertwined with matters of societal concern and 
applications for social good, especially if the most vulnerable members of society are empowered to 
use machine learning to meet their own goals. 

Although each of the four attributes are conceptually distinct, they may have complex 
interrelationships. We return to this point later in the book, especially in Chapter 14. There, we 
describe relationships among the different attributes (some are tradeoffs, some are not) that 
policymakers must reason about to decide a system’s intended operations. 

We use the following working definition of trustworthy machine learning in the remainder of the 
book. A trustworthy machine learning system is one that has sufficient: 

1. basic performance, 

2. reliability, 

3. human interaction, and 

4. aligned purpose. 

We keep the focus on making machine learning systems worthy of trust rather than touching on other 
(possibly duplicitous) ways of making them trusted. 

1.2 Organization of the Book 
The organization of the book closely follows the four attributes in the definition of trustworthy 
machine learning. I am purposefully mindful in developing the concepts slowly rather than jumping 
ahead quickly to the later topics that may be what are needed in immediate practice. This is because 

 

 
17Kiri L. Wagstaff. “Machine Learning that Matters.” In: Proceedings of the International Conference on Machine Learning. Edinburgh, 
Scotland, UK, Jun.–Jul. 2012, pp. 521–528. 
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the process of creating trustworthy machine learning systems, given the high consequence of 
considerations like safety and reliability, should also be done in a thoughtful manner without 
overzealous haste. Taking shortcuts can come back and bite you.  

“Slow down and let your System 2 take control.”18 

—Daniel Kahneman, behavioral economist at Princeton University 

“Worry about rhythm rather than speed.” 

—Danil Mikhailov, executive director of data.org 

 
Highlighted in Figure 1.1, the remainder of Part 1 discusses the book’s limitations and works 

through a couple of preliminary topics that are important for understanding the concepts of 
trustworthy machine learning: the personas and lifecycle of developing machine learning systems in 
practice, and quantifying the concept of safety in terms of uncertainty. 

 

Figure 1.1. Organization of the book. This first part focuses on introducing the topic of trustworthy machine 
learning and covers a few preliminary topics. Accessible caption. A flow diagram from left to right with six 
boxes: part 1: introduction and preliminaries; part 2: data; part 3: basic modeling; part 4: reliability; 
part 5: interaction; part 6: purpose. Part 1 is highlighted. Parts 3–4 are labeled as attributes of safety. 
Parts 3–6 are labeled as attributes of trustworthiness. 

Part 2 is a discussion of data, the prerequisite for doing machine learning. In addition to providing 
a short overview of different data modalities and sources, the part touches on three topics relevant for 
trustworthy machine learning: biases, consent, and privacy. 

Part 3 relates to the first attribute of trustworthy machine learning: basic performance. It describes 
optimal detection theory and different formulations of supervised machine learning. It teaches several 
different learning algorithms such as discriminant analysis, naïve Bayes, k-nearest neighbor, decision 

 

 
18Kahneman and Tversky described two ways in which the brain forms thoughts, which they call ‘System 1’ and ‘System 2.’ 
System 1 is fast, automatic, emotional, stereotypic and consciousness. System 2 is slow, effortful, logical, calculating, and 
conscious. Please engage the ‘System 2’ parts of your thought processes and be deliberate when you develop trustworthy 
machine learning systems. 
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trees and forests, logistic regression, support vector machines, and neural networks. The part 
concludes with methods for causal discovery and causal inference. 

Part 4 is about the second attribute of trustworthy machine learning: reliability. This attribute is 
discussed through three specific topics: distribution shift, fairness, and adversarial robustness. The 
descriptions of these topics not only define the problems, but also provide solutions for detecting and 
mitigating the problems.  

Part 5 is about the third attribute: human interaction with machine learning systems in both 
directions—understanding the system and giving it instruction. The part begins with interpretability 
and explainability of models. It moves onto methods for testing and documenting aspects of machine 
learning algorithms that can then be transparently reported, e.g. through factsheets. The final topic of 
this part is on the machine eliciting the policies and values of people and society to govern its behavior. 

Part 6 discusses the fourth attribute: what those values of people and society may be. It begins by 
covering the ethics principles assembled by different parties as their paradigms for machine learning. 
Next, it discusses how the inclusion of creators of machine learning systems with diverse lived 
experiences broadens the values, goals, and applications of machine learning, leading in some cases to 
the pursuit of social good through the technology. Finally, it shows how the prevailing paradigm of 
machine learning in information recommendation platforms leads to filter bubbles and 
disinformation, and suggests alternatives. The final chapter about platforms is framed in terms of 
trustworthy institutions, which have different attributes than individual trustworthy people or 
individual trustworthy machine learning systems. 

 

1.3 Limitations 
Machine learning is an increasingly vast topic of study that requires several volumes to properly 
describe. The elements of trust in machine learning are also now becoming quite vast. In order to keep 
this book manageable for both me (the author) and you (the reader) it is limited in its depth and 
coverage of topics. Parts of the book are applicable both to simpler data analysis paradigms that do not 
involve machine learning and to explicitly programmed computer-based decision support systems, 
but for the sake of clarity and focus, they are not called out separately. 

Significantly, despite trustworthy machine learning being a topic at the intersection of technology 
and society, the focus is heavily skewed toward technical definitions and methods. I recognize that 
philosophical, legal, political, sociological, psychological, and economic perspectives may be even 
more important to understanding, analyzing, and affecting machine learning’s role in society than the 
technical perspective. Nevertheless, these topics are outside the scope of the book. Insights from the 
field of human-computer interaction are also extremely relevant to trustworthy machine learning; I 
discuss these to a limited extent at various points in the book, particularly Part 5. 

Within machine learning, I focus on supervised learning at the expense of unsupervised and 
reinforcement learning. I do, however, cover graphical representations of probability and causality as 
well as their inference. Within supervised learning, the primary focus is on classification problems in 
which the labels are categorical. Regression, ordinal regression, ranking, anomaly detection, 
recommendation, survival analysis, and other problems without categorical labels are not the focus. 
The depth in describing various classification algorithms is limited and focused on high-level concepts 
rather than more detailed accounts or engineering tricks for using the algorithms.  
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Several different forms and modalities of data are briefly described in Part 2, such as time series, 
event streams, graphs, and parsed natural language. However, the primary focus of subsequent 
chapters is on forms of data represented as feature vectors.19 Structured, tabular data as well as 
images are naturally represented as feature vectors. Natural language text is also often represented by 
a feature vector for further analysis.  

An important ongoing direction of machine learning research is transfer learning, a paradigm in 
which previously learned models are repurposed for new uses and contexts after some amount of fine-
tuning with data from the new context. A related concept for causal models is statistical 
transportability. Nonetheless, this topic is beyond the scope of the book except in passing in a couple 
of places. Similarly, the concepts of multi-view machine learning and causal data fusion, which involve 
the modeling of disparate sets of features are not broached. In addition, the paradigm of active 
learning, in which the labeling of data is done sequentially rather than in batch before modeling, is not 
discussed in the book.  

As a final set of technical limitations, the depth of the mathematics is limited. For example, I do not 
present the concepts of probability at a depth requiring measure theory. Moreover, I stop at the posing 
of optimization problems and do not go into specific algorithms for conducting the optimization.20 
Discussions of statistical learning theory, such as generalization bounds, are also limited. 

 

1.4 Positionality Statement 
It is highly atypical for a computer science or engineering book to consider the influence of the 
author’s personal experiences and background on its contents. Such a discussion is known as a 
reflexivity statement or positionality statement in the social sciences. I do so here since power and 
privilege play a key role in how machine learning is developed and deployed in the real-world. This 
recognition is increasing because of a current increase in attention to social justice in different 
societies. Therefore, it is important to be transparent about me so that you can assess potential biases 
against marginalized individuals and groups in the contents of the book. I’ll evaluate myself using the 
four dimensions of trustworthiness detailed earlier in the chapter (competence, reliability, interaction, 
and purpose).  

“Science currently is taught as some objective view from nowhere (a term I learned 
about from reading feminist studies works), from no one’s point of view.” 

—Timnit Gebru, research scientist at Google 

I encourage you, the reader, to create your own positionality statement as you embark on your journey 
to create trustworthy machine learning systems. 

 

 
19A feature is an individual measurable attribute of an observed phenomenon. Vectors are mathematical objects that can be 
added together and multiplied by numbers. 
20Mathematical optimization is the selection of a best element from some set of alternatives based on a desired criterion. 
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1.4.1 Competence and Credibility 
I completed a doctorate in electrical engineering and computer science from the Massachusetts 
Institute of Technology (MIT). My dissertation included a new kind of supervised machine learning 
method and a decision-theoretic model of human decision making that quantitatively predicts racial 
bias. I have been a research staff member at IBM Research – Thomas J. Watson Research Center since 
2010 conducting research on statistical signal processing, data mining, and machine learning. The 
results have been published in various reputed workshops, conferences, journals, and magazines 
including ICML, the Conference on Neural Information Processing Systems (NeurIPS), the 
International Conference on Learning Representations (ICLR), the ACM Conference on Knowledge 
Discovery and Data Mining (KDD), the AAAI/ACM Conference on Artificial Intelligence, Ethics and 
Society (AIES), the Journal of Machine Learning Research (JMLR), the IEEE Transactions on Signal 
Processing, the IEEE Transactions on Information Theory, and the Proceedings of the IEEE. I have 
defined a large part of the strategy for trustworthy machine learning at IBM Research and a large 
subset of my own work has been on interpretability, safety, fairness, transparency, value alignment, 
and social good in machine learning and artificial intelligence.  

I have developed real-world solutions that have been deployed in high-stakes applications of 
machine learning and data science during engagements with IBM business units, various clients of 
IBM, and social change organizations. I have led teams that developed the comprehensive open source 
toolkits and resources on fairness, explainability and uncertainty quantification named AI Fairness 
360, AI Explainability 360 and Uncertainty Quantification 360, and transitioned some of their 
capabilities into the IBM Watson Studio product. I have spoken at various industry-oriented meetups 
and conventions such as the O’Reilly AI Conference, Open Data Science Conference, and IBM Think. 

I have been an adjunct faculty member at New York University (NYU) and a guest lecturer in 
courses at Cornell, Georgetown, NYU, Princeton, Rutgers, and Syracuse. I organized the Workshop on 
Human Interpretability in Machine Learning at ICML annually from 2016 to 2020 as well as several 
other workshops and symposia related to trustworthy machine learning. I served as a track chair for 
the practice and experience track of the 2020 ACM Conference on Fairness, Accountability and 
Transparency and was a member of the Partnership on AI’s Safety-Critical AI expert group.  

To compose this book, I am channeling all these past experiences along with the interactions with 
students, lifelong learners, and colleagues that these experiences have afforded. Of course, I have less 
depth of knowledge about the topics of some of the chapters than others, but have some level of both 
practical/applied and theoretical knowledge on all of them. 

1.4.2 Reliability and Biases 
Reliability stems from the ability to work in different contexts and conditions. I have only had one 
employer, which limits this ability. Nevertheless, by working at IBM Research and volunteering with 
DataKind (an organization that helps professional data scientists conduct projects with social change 
organizations), my applied data science work has engaged with a variety of for-profit corporations, 
social enterprises, and non-profit organizations on problems in human resources and workforce 
analytics, health systems and policy, clinical health care, humanitarian response, international 
development, financial inclusion, and philanthropic decision making. Moreover, my research 
contributions have been disseminated not only in machine learning research venues, but also 
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statistics, operations research, signal processing, information theory, and information systems 
venues, as well as the industry-oriented venues I mentioned earlier. 

More importantly for trustworthy machine learning, I would like to mention my privileges and 
personal biases. I was born and raised in the 1980s and 1990s in predominantly white upper middle-
class suburbs of Syracuse, a medium-sized city in upstate New York located on the traditional lands of 
the Onöñda’gaga’ people, that is one of the most racially-segregated in the United States. Other places I 
have lived for periods of three months or longer are Ithaca, Elmsford, Ossining, and Chappaqua in New 
York; Burlington and Cambridge in Massachusetts; Livermore, California; Ludhiana, New Delhi, and 
Aligarh in northern India; Manila, Philippines; Paris, France; and Nairobi, Kenya. I am a cis male, 
second-generation American of South Asian descent. To a large extent, I am an adherent of dharmic 
religious practices and philosophies. One of my great-great-grandfathers was the first Indian to study 
at MIT in 1905. My father and his parents lived hand-to-mouth at times, albeit with access to the social 
capital of their forward caste group. My twin brother, father, and both grandfathers are or were 
professors of electrical engineering. My mother was a public school teacher. I studied in privileged 
public schools for my primary and secondary education and an Ivy League university for my 
undergraduate education. My employer, IBM, is a powerful and influential corporation. As such, I have 
been highly privileged in understanding paths to academic and professional success and having an 
enabling social network. Throughout my life, however, I have been a member of a minority group with 
limited political power. I have had some visibility into hardship beyond the superficial level, but none 
of this experience has been lived experience, where I would not have a chance to leave if I wanted to. 

1.4.3 Interaction 
I wrote the book with some amount of transparency. While I was writing the first couple of chapters in 
early 2020, anyone could view them through Overleaf (https://v2.overleaf.com/read/bzbzymggkbzd). 
After I signed a book contract with Manning Publications, chapters were posted to the Manning Early 
Access Program as I wrote them, with readers having an opportunity to engage via the Manning 
liveBook Discussion Forum. After the publisher and I parted ways in September 2021, I posted 
chapters of the in-progress manuscript to http://www.trustworthymachinelearning.com. I received 
several useful comments from various individuals throughout the drafting process via email 
(krvarshn@us.ibm.com), Twitter direct message (@krvarshney), telephone (+1-914-945-1628), and 
personal meetings. When I completed version 0.9 of the book at the end of December 2021, I posted it 
at the same site. On January 28, 2022, I convened a panel of five people with lived experiences 
different from mine to provide their perspectives on the content contained in version 0.9 using a 
modified Diverse Voices method.21 An electronic version of this edition of the book will continue to be 
available at no cost at the same website: http://www.trustworthymachinelearning.com.  

 

 
21Lassana Magassa, Meg Young, and Batya Friedman. “Diverse Voices: A How-To Guide for Facilitating Inclusiveness in Tech 
Policy.” Tech Policy Lab, University of Washington, 2017. The panelists who provided impartial input were Mashael Alzaid, 
Kenya Andrews, Noah Chasek-Macfoy, Scott Fancher, and Timothy Odonga. As a central part of the Diverse Voices method, 
they were offered honoraria, which some declined. The funds came from an honorarium I received for participating in an AI 
Documentation Summit convened by The Data Nutrition Project in January 2022. 
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1.4.4 Motivation and Values 
My motivations begin with family values. The great-great-grandfather I mentioned above returned to 
India with knowledge of industrial-scale glassmaking from MIT and made social impact by 
establishing a factory in service of swaraj, self-governance in India, and the training of local workers. 
One of my grandfathers applied his knowledge of systems and control theory to problems in 
agriculture and also worked toward social justice in India through non-technological means. My other 
grandfather joined UNESCO to establish engineering colleges in developing Iraq and Thailand. My 
mother taught science in an inner-city school district’s special program for students caught with 
weapons in their regular middle and high schools.  

In the same way, consistent with family values as well as external ethics (yama),22 internal ethics 
(niyama),23 and the ethos of the American dream, my personal motivation is to advance today’s most 
societally-impactful technology (machine learning), mitigate its harmfulness, apply it to uplift 
humanity, and train others to do the same. I co-founded the IBM Science for Social Good fellowship 
program in 2015–2016 and direct it toward these aims. 

The reason I wrote this book is many-fold. First, I feel that although many of the topics that are 
covered in the book, like fairness, explainability, robustness, and transparency are often talked about 
together, there is no source that unifies them in a coherent thread. With this book, there is such a 
resource for technologists, developers, and researchers to learn from. Second, I feel that in industry 
practice, the unbridled success of deep learning has led to too much emphasis on engineers squeezing 
out a little more accuracy with little conceptual understanding and little regard to considerations 
beyond accuracy (the other three attributes of trust). The aim of the book is to fill the conceptual 
understanding gap for the practitioners who wish to do so, especially those working in high-stakes 
application domains. (Cai and Guo find that many software engineers fundamentally desire guidance 
on understanding and applying the conceptual underpinnings of machine learning.24) The inclusion of 
considerations beyond predictive accuracy cannot be an afterthought; it must be part of the plan from 
the beginning of any new project. Third, I would like to empower others who share my values and 
ethics to pursue a future in which there is a virtuous cycle of research and development in which 
technology helps society flourish and society helps technology flourish. 

 

1.5 Summary 
▪ Machine learning systems are influencing critical decisions that have consequences to our 

daily lives, but society lacks trust in them.  

▪ Trustworthiness is composed of four attributes: competence, reliability, openness, and 
selflessness. 

 

 
22List of yamas: ahiṃsā (non-harm), satya (benevolence and truthfulness), asteya (responsibility and non-stealing), brahmacarya 
(good direction of energy), and aparigraha (simplicity and generosity).  
23List of niyamas: śauca (clarity and purity), santoṣa (contentment), tapas (sacrifice for others), svādhyayā (self-study), and īsvara-
praṇidhāna (humility and service to something bigger). 
24Carrie J. Cai and Philip J. Guo. “Software Developers Learning Machine Learning: Motivations, Hurdles, and Desires.” In: 
Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing. Memphis, Tennessee, USA, Oct. 2019, pp. 
25–34. 
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▪ The book is organized to match this decomposition of the four components of trust. 

▪ Despite my limitations and the limitations of the contents, the book endeavors to develop a 
conceptual understanding not only of the principles and theory behind how machine learning 
systems can achieve these goals to become more trustworthy, but also develop the algorithmic 
and non-algorithmic methods to pursue them in practice. 

▪ By the end of the book, your thought process should naturally be predisposed to including 
elements of trustworthiness throughout the lifecycle of machine learning solutions you 
develop. 
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2  
Machine Learning Lifecycle 

Imagine that you are a project manager on the innovation team of m-Udhār Solar, a (fictional) pay-as-
you-go solar energy provider to poor rural villages that is struggling to handle a growing load of 
applications. The company is poised to expand from installing solar panels in a handful of pilot districts 
to all the districts in the state, but only if it can make loan decisions for 25 times as many applications 
per day with the same number of loan officers. You think machine learning may be able to help.  

Is this a problem to address with machine learning? How would you begin the project? What steps 
would you follow? What roles would be involved in carrying out the steps? Which stakeholders’ buy-in 
would you need to win? And importantly, what would you need to do to ensure that the system is 
trustworthy? Making a machine learning system trustworthy should not be an afterthought or add-on, 
but should be part of the plan from the beginning. 

The end-to-end development process or lifecycle involves several steps:  

1. problem specification, 

2. data understanding, 

3. data preparation, 

4. modeling, 

5. evaluation, and 

6. deployment and monitoring. 

Narrow definitions consider only the modeling step to be the realm of machine learning. They consider 
the other steps to be part of the broader endeavor of data science and engineering. Most books and 
research on machine learning are similarly focused on the modeling stage. However, you cannot really 
execute the development and deployment of a trustworthy machine learning system without focusing 
on all parts of the lifecycle. There are no shortcuts. This chapter sketches out the master plan. 
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2.1 A Mental Model for the Machine Learning Lifecycle 
The six steps of the machine learning lifecycle given above, also illustrated in Figure 2.1, are codified in 
the Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology. This is the mental model 
to keep in mind of how machine learning systems should be developed and deployed. Although the flow 
largely proceeds sequentially through the steps, there are several opportunities to go back and redo 
earlier steps. This description is stylized; even good examples of real-world lifecycles are messier, but 
the main idea continues to hold. 

 
Figure 2.1. Steps of the machine learning lifecycle codified in CRISP-DM. Different personas participate in differ-
ent phases of the lifecycle. Accessible caption. A series of six steps arranged in a circle: (1) problem speci-
fication; (2) data understanding; (3) data preparation; (4) modeling; (5) evaluation; (6) deployment and 
monitoring. There are some backward paths: from data understanding to problem specification; from 
modeling to data preparation; from evaluation to problem specification. Five personas are associated 
with different steps: problem owner with steps 1–2; data engineer with steps 2–3; data scientist with 
steps 1–4; model validator with step 5; ML operations engineer with step 6. A diverse stakeholders per-
sona is on the side overseeing all steps. 

Because the modeling stage is often put on a pedestal, there is a temptation to use the analogy of an 
onion in working out the project plan: start with the core modeling, work your way out to data 
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understanding/preparation and evaluation, and then further work your way out to problem specification 
and deployment/monitoring. This analogy works well for a telecommunications system for example,1 
both pedagogically and in how the technology is developed, but a sequential process is more appropriate 
for a trustworthy machine learning system. Always start with understanding the use case and specifying 
the problem. 

“People are involved in every phase of the AI lifecycle, making decisions about which 
problem to address, which data to use, what to optimize for, etc.”  

—Jenn Wortman Vaughan, research scientist at Microsoft 

The different steps are carried out by different parties with different personas including problem 
owners, data engineers, data scientists, model validators, and machine learning (ML) operations 
engineers. Problem owners are primarily involved with problem specification and data understanding. 
Data engineers work on data understanding and data preparation. Data scientists tend to play a role in 
all of the first four steps. Model validators perform evaluation. ML operations engineers are responsible 
for deployment and monitoring. 

Additional important personas in the context of trustworthiness are the potential trustors of the 
system: human decision makers being supported by the machine learning model (m-Udhār loan 
officers), affected parties about whom the decisions are made (rural applicants; they may be members 
of marginalized groups), regulators and policymakers, and the general public. Each stakeholder has 
different needs, concerns, desires, and values. Systems must meet those needs and align with those 
values to be trustworthy. Multi-stakeholder engagement is essential and cannot be divorced from the 
technical aspects of design and development. Documenting and transparently reporting the different 
steps of the lifecycle help build trust among stakeholders.  

 

2.2 Problem Specification 
The first step when starting the development of a machine learning system is to define the problem. 
What is the problem owner hoping to accomplish and why? The director of m-Udhār Solar wishes to 
automate a task that is cumbersome and costly for people to do. In other scenarios, problem owners may 
want to augment the capabilities of human decision makers to improve the quality of their decisions. 
They may have other goals altogether. In some cases, the problem should not even be solved to begin 
with, because doing so may cause or exacerbate societal harms and breach the lines of ethical behavior.2 
A harm is an outcome with a severe unwanted effect on a person’s life. This definition of harm is made 
more precise in Chapter 3. Let’s repeat this important point: do not solve problems that would lead to 
harms for someone or some group. 

 

 
1C. Richard Johnson, Jr. and William A. Sethares. Telecommunication Breakdown: Concepts of Communication Transmitted via Soft-
ware-Defined Radio. Upper Saddle River, New Jersey, USA: Prentice Hall, 2003.  
2Andrew D. Selbst, danah boyd, Sorelle A. Friedler, Suresh Venkatasubramanian, and Janet Vertesi. “Fairness and Abstraction 
in Sociotechnical Systems.” In: Proceedings of the ACM Conference on Fairness, Accountability, and Transparency. Barcelona, Spain, 
Jan. 2020, pp. 59–68. 
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“We all have a responsibility to ask not just, ‘can we do this?’, but ‘should we do this?’” 

—Kathy Baxter, ethical AI practice architect at Salesforce 

Problem identification and understanding is best done as a dialogue between problem owners and 
data scientists because problem owners might not have the imagination of what is possible through 
machine learning and data scientists do not have a visceral understanding of the pain points that 
problem owners are facing. Problem owners should also invite representatives of marginalized groups 
for a seat at the problem understanding table to voice their pain points.3 Problem identification is 
arguably the most important and most difficult thing to do in the entire lifecycle. An inclusive design 
process is imperative. Finding the light at the end of the tunnel is actually not that hard, but finding the 
tunnel can be very hard. The best problems to tackle are ones that have a benefit to humanity, like 
helping light up the lives and livelihoods of rural villagers. 

Once problem owners have identified a problem worth solving, they need to specify metrics of 
success. Being a social enterprise, the metric for m-Udhār Solar is number of households served with 
acceptable risk of defaulting. In general, these metrics should be in real-world terms relevant to the use 
case, such as lives saved, time reduced, or cost avoided.4 The data scientist and problem owner can then 
map the real-world problem and metrics to machine learning problems and metrics. This specification 
should be as crisp as possible, including both the quantities to be measured and their acceptable values. 

The goals need not be specified only as traditional key performance indicators, but can also include 
objectives for maintenance of performance across varying conditions, fairness of outcomes across 
groups and individuals, resilience to threats, or number of insights provided to users. Defining what is 
meant by fairness and specifying a threat model are part of this endeavor. For example, m-Udhār aims 
not to discriminate by caste or creed. Again, these real-world goals must be made precise through a 
conversation between problem owners, diverse voices, and data scientists. The process of eliciting 
objectives is known as value alignment.  

One important consideration in problem scoping is resource availability, both in computing and 
human resources. A large national or multinational bank will have many more resources than m-Udhār 
Solar. A large technology company will have the most of all. What can reasonably be accomplished is 
gated by the skill of the development team, the computational power for training models and evaluating 
new samples, and the amount of relevant data. 

Machine learning is not a panacea. Even if the problem makes sense, machine learning may not be 
the most appropriate solution to achieve the metrics of success. Oftentimes, back-of-the-envelope 
calculations can indicate the lack of fit of a machine learning solution before other steps are undertaken. 
A common reason for machine learning to not be a viable solution is lack of appropriate data, which 
brings us to the next step: data understanding. 

 

 

 
3Meg Young, Lassana Magassa, and Batya Friedman. “Toward Inclusive Tech Policy Design: A Method for Underrepresented 
Voices to Strengthen Tech Policy Documents.” In: Ethics and Information Technology 21.2 (Jun. 2019), pp. 89–103. The input of 
diverse stakeholders, especially those from marginalized groups, should be monetarily compensated.  
4Kiri L. Wagstaff. “Machine Learning that Matters.” In: Proceedings of the International Conference on Machine Learning. Edinburgh, 
Scotland, UK, Jun.–Jul. 2012, pp. 521–528.  
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2.3 Data Understanding 
Once the problem has been identified and specified, a relevant dataset must be collected. In instances 
where the problem is to automate an existing decision-making process, identifying the relevant dataset 
is fairly straightforward. M-Udhār’s dataset consists of attributes and other inputs that loan officers used 
to make decisions in the past, along with their decisions. The inputs constitute the features and the 
historical decisions constitute the labels for a supervised machine learning task. But there may also be 
data that loan officers did not use that could be leveraged by a machine learning system. A promise of 
so-called ‘big data’ is the inclusion of large sets of attributes, many weakly correlated to the label, that 
would overwhelm a person but not a machine. For the machine learning system to make even better 
decisions than people, true outcomes rather than decisions should ideally be the labels, e.g. whether an 
applicant defaulted on their loan in the future rather than the approval decision. 

Machine learning can also be applied in use cases that are new processes for an organization and no 
exact historical data exists. Here, proxy data must be identified. For example, a health system may wish 
to start offering home nursing care to indisposed individuals proactively, but may not have data directly 
applicable for understanding this decision. Data from previous interactions of patients with the health 
system may be used as a proxy. In other cases, it may be that new data must be collected. In yet other 
cases, it may be that relevant data neither exists nor can be collected, and the problem must be specified 
differently.  

Once a dataset has been identified or collected, it is critical for the data scientist and data engineer 
to understand the semantics of the various features and their values by consulting the problem owner 
and other subject matter experts as well as by consulting a data dictionary (a document describing the 
features) if one exists. They should also conduct exploratory data analysis and visualization. This 
understanding can help identify problems in the data such as leakage, the presence of information in the 
features helpful in predicting the label that would not be available in new inputs to a deployed system, 
and various forms of bias. One important form of bias is social bias in which a proxy for the label does not 
well-reflect the true label of interest. For example, using past number of doctor visits may not be a good 
proxy of how sick an individual is if there are socioeconomic reasons why some people visit the doctor 
more than others at the same level of ill health. A similar social bias stems from prejudice: labels from 
historical human decisions contain systematic differences across groups. Other important biases 
include population bias: the dataset underrepresents certain inputs and overrepresents others, and 
temporal bias: issues stemming from the timing of data collection.  

The data understanding stage also requires the development team to consider data usage issues. 
Just because features are available (and may even improve the performance of a model), that does not 
mean that they can and should be used. Use of certain features may be prohibited by law, be unethical, 
or may not have appropriate consent in place. For example, m-Udhār Solar may have the surname of 
the applicant available, which indicates the applicant’s caste and religion and may even help a model 
achieve better performance, but it is unethical to use. The use of other features may pose privacy risks. 
A more detailed treatment of data-related issues is presented in Part 2 of the book. 

 



Machine Learning Lifecycle | 19 

2.4 Data Preparation 
Data integration, data cleaning, and feature engineering constitute the data preparation step of the 
lifecycle. The end goal of this stage is a final training dataset to be used in modeling. Starting from the 
insights gleaned in the data understanding phase, data integration starts by extracting, transforming, 
and loading (ETL) data from disparate relevant databases and other data sources. Next, the data from 
the disparate sources is joined into a single dataset that is maintained in a format amenable to 
downstream modeling. This step is most challenging when dealing with humongous data sources. 

Data cleaning is also based on data understanding from the previous stage. Some of the key 
components of data cleaning are: 

▪ filling in missing values (known as imputation) or discarding them,  

▪ binning continuous feature values to account for outliers, 

▪ grouping or recoding categorical feature values to deal with rarely occurring values or to combine 
semantically similar values, and 

▪ dropping features that induce leakage or should not be used for legal, ethical, or privacy reasons. 

Feature engineering is mathematically transforming features to derive new features, including through 
interactions of several raw features. Apart from the initial problem specification, feature engineering is 
the point in the lifecycle that requires the most creativity from data scientists. Data cleaning and feature 
engineering require the data engineer and data scientist to make many choices that have no right or 
wrong answer. Should m-Udhār’s data engineer and data scientist group together any number of 
motorcycles owned by the household greater than zero? How should they encode the profession of the 
applicant? The data scientist and data engineer should revisit the project goals and continually consult 
with subject matter experts and stakeholders with differing perspectives to help make appropriate 
choices. When there is ambiguity, they should work towards safety, reliability, and aligning with elicited 
values. 

 

2.5 Modeling 
The modeling step receives a clear problem specification (including metrics of success) and a fixed, 
clean training dataset. A mental model for trustworthy modeling includes three main parts: 

1. pre-processing the training data, 

2. training the model with a machine learning algorithm, and 

3. post-processing the model’s output predictions. 

This idea is diagrammed in Figure 2.2. Details of this step will be covered in depth throughout the book, 
but an overview is provided here. 
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Figure 2.2. Main parts of trustworthy machine learning modeling. Distribution shift, unfairness, adversarial at-
tacks, and lack of explainability can be mitigated using the various techniques listed below each part. Details of 
these methods are presented in the remainder of the book. Accessible caption. A block diagram with a train-
ing dataset as input to a pre-processing block with a pre-processed dataset as output. The pre-pro-
cessed dataset is input to a model training block with an initial model as output. The initial model is 
input to a post-processing block with a final model as output. The following techniques are examples of 
pre-processing: domain adaptation (distribution shift); bias mitigation pre-processing (unfairness); 
data sanitization (adversarial attacks); disentangled representation (lack of explainability). The follow-
ing techniques are examples of model training: domain robustness (distribution shift); bias mitigation 
in-processing (unfairness); smoothing/adversarial training (adversarial attacks); directly interpretable 
models (lack of explainability). The following techniques are examples of post-processing: bias mitiga-
tion post-processing (unfairness); patching (adversarial attacks); post hoc explanations (lack of ex-
plainability). 

Different from data preparation, data pre-processing is meant to alter the statistics or properties of the 
dataset to achieve certain goals. Domain adaptation overcomes a lack of robustness to changing 
environments, including temporal bias. Bias mitigation pre-processing changes the dataset to overcome 
social bias and population bias. Data sanitization aims to remove traces of data poisoning attacks by 
malicious actors. Learning disentangled representations overcomes a lack of human interpretability of the 
features. All should be performed as required by the problem specification. 

The main task in the modeling step is to use an algorithm that finds the patterns in the training 
dataset and generalizes from them to fit a model that will predict labels for new unseen data points with 
good performance. (The term predict does not necessarily imply forecasting into the future, but simply 
refers to providing a guess for an unknown value.) There are many different algorithms for fitting 
models, each with a different inductive bias or set of assumptions it uses to generalize. Many machine 
learning algorithms explicitly minimize the objective function that was determined in the problem 
specification step of the lifecycle. Some algorithms minimize an approximation to the specified 
objective to make the mathematical optimization easier. This common approach to machine learning is 
known as risk minimization.  

The no free lunch theorem of machine learning says that there is no one best machine learning 
algorithm for all problems and datasets.5 Which one works best depends on the characteristics of the 

 

 
5David H. Wolpert. “The Lack of A Priori Distinctions Between Learning Algorithms.” In: Neural Computation 8.7 (Oct. 1996), pp. 
1341–1390.  
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dataset. Data scientists try out several different methods, tune their parameters, and see which one 
performs best empirically. The empirical comparison is conducted by randomly splitting the training 
dataset into a training partition on which the model is fit and a testing partition on which the model’s 
performance is validated. The partitioning and validation can be done once, or they can be done several 
times. When done several times, the procedure is known as cross-validation; it is useful because it 
characterizes the stability of the results. Cross-validation should be done for datasets with a small 
number of samples.  

The basic machine learning algorithm can be enhanced in several ways to satisfy additional 
objectives and constraints captured in the problem specification. One way to increase reliability across 
operating conditions is known as domain robustness. Machine learning algorithms that reduce unwanted 
biases are known as bias mitigation in-processing. One example category of methods for defending against 
data poisoning attacks is known as smoothing. A defense against a different kind of adversarial attack, 
the evasion attack, is adversarial training. Certain machine learning algorithms produce models that are 
simple in form and thus directly interpretable and understandable to people. Once again, all of these 
enhancements should be done according to the problem specification. 

Post-processing rules change the predicted label of a sample or compute additional information to 
accompany the predicted label. Post-processing methods can be divided into two high-level categories: 
open-box and closed-box. Open-box methods utilize information from the model such as its parameters 
and functions of its parameters. Closed-box methods can only see the output predictions arising from 
given inputs. Open-box methods should be used if possible, such as when there is close integration of 
model training and post-processing in the system. In certain scenarios, post-processing methods, also 
known as post hoc methods, are isolated from the model for logistical or security reasons. In these 
scenarios, only closed-box methods are tenable. Post-processing techniques for increasing reliability, 
mitigating unwanted biases, defending against adversarial attacks, and generating explanations should 
be used judiciously to achieve the goals of the problem owner. For example, post hoc explanations are 
important to provide to m-Udhār Solar’s loan officers so that they can better discuss the decision with 
the applicant. 

The specification of certain use cases calls for causal modeling: finding generalizable instances of 
cause-and-effect from the training data rather than only correlative patterns. These are problems in 
which input interventions are meant to change the outcome. For example, when coaching an employee 
for success, it is not good enough to identify the pattern that putting in extra hours is predictive of a 
promotion. Good advice represents a causal relationship: if the employee starts working extra hours, 
then they can expect to be promoted. It may be that there is a common cause (e.g. conscientiousness) 
for both doing quality work and working extra hours, but it is only doing quality work that causes a 
promotion. Working long hours while doing poor quality work will not yield a promotion; causal 
modeling will show that. 

 

2.6 Evaluation 
Once m-Udhār’s data scientists have a trained and tested model that they feel best satisfies the problem 
owner’s requirements, they pass it on to model validators. A model validator conducts further 
independent testing and evaluation of the model, often with a completely separate held-out dataset that 
the data scientist did not have access to. It is important that the held-out set not have any leakage from 
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the training set. To stress-test the model’s safety and reliability, the model validator can and should 
evaluate it on data collected under various conditions and data generated to simulate unlikely events. 

The model validator persona is part of model risk management. Model risk is the chance of decisions 
supported by statistical or machine learning models yielding gross harms. Issues can come from any of 
the preceding lifecycle steps: from bad problem specification to data quality problems to bugs in the 
machine learning algorithm software. Even this late in the game, it is possible that the team might have 
to start over if issues are discovered. It is only after the model validator signs off on the model that it is 
put into production. Although not standard practice yet in machine learning, this ‘signing off’ can be 
construed as a declaration of conformity, a document often used in various industries and sectors 
certifying that a product is operational and safe. 

 

2.7 Deployment and Monitoring 
The solar panels are loaded on the truck and the electricians are just waiting to find out which 
households to install them at. The last step on the long road to the productive use of the machine learning 
system is finally here! The ML operations engineer takes center stage to deploy the model. Starting with 
a certified model, there are still questions to be answered. What infrastructure will bring new data to the 
model? Will predictions be made in batch or one-by-one? How much latency is allowable? How will the 
user interact with the system? The engineer works with different stakeholders to answer the questions 
and implements the infrastructure to meet the needs, resulting in a deployed model. 

Important for making the model trustworthy, the ML operations engineer must also implement tools 
to monitor the model’s performance to ensure it is operating as expected. As before, performance 
includes all relevant metrics of success in the problem specification, not only traditional key 
performance indicators. The performance of trained models can degrade over time as the incoming data 
statistically drifts away from the training data. If drift is detected, the monitoring system should notify 
the development team and other relevant stakeholders. All four attributes of trustworthiness (basic 
performance, reliability, human interaction, and aligned purpose) permeate throughout the machine 
learning lifecycle and must be accounted for in the development, deployment, and monitoring plan from 
the beginning to the end. M-Udhār Solar has now deployed its loan origination automation system and 
is able to easily serve applicants not just in one entire state, but a few neighboring ones as well. 
 

2.8 Summary 
▪ The machine learning lifecycle consists of six main sequential steps: (1) problem specification, 

(2) data understanding, (3) data preparation, (4) modeling, (5) evaluation, and (6) deployment 
and monitoring, performed by people in different roles.  

▪ The modeling step has three parts: (1) pre-processing, (2) model training, and (3) post-
processing. 

▪ To operationalize a machine learning system, plan for the different attributes of trustworthiness 
starting from the first step of problem specification. Considerations beyond basic performance 
should not be sprinkled on at the end like pixie dust, but developed at every step of the way with 
input from diverse stakeholders, including affected users from marginalized groups. 
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3  
Safety 

Imagine that you are a data scientist at the (fictional) peer-to-peer lender ThriveGuild. You are in the 
problem specification phase of the machine learning lifecycle for a system that evaluates and approves 
borrowers. The problem owners, diverse stakeholders, and you yourself want this system to be 
trustworthy and not cause harm to people. Everyone wants it to be safe. But what is harm and what is 
safety in the context of a machine learning system?  

Safety can be defined in very domain-specific ways, like safe toys not having lead paint or small parts 
that pose choking hazards, safe neighborhoods having low rates of violent crime, and safe roads having 
a maximum curvature. But these definitions are not particularly useful in helping define safety for 
machine learning. Is there an even more basic definition of safety that could be extended to the machine 
learning context? Yes, based on the concepts of (1) harm, (2) aleatoric uncertainty and risk, and (3) epistemic 
uncertainty.1 (These terms are defined in the next section.) 

This chapter teaches you how to approach the problem specification phase of a trustworthy machine 
learning system from a safety perspective. Specifically, by defining safety as minimizing two different 
types of uncertainty, you can collaborate with problem owners to crisply specify safety requirements 
and objectives that you can then work towards in the later parts of the lifecycle.2 The chapter covers: 

▪ Constructing the concept of safety from more basic concepts applicable to machine learning: 
harm, aleatoric uncertainty, and epistemic uncertainty. 

▪ Charting out how to distinguish between the two types of uncertainty and articulating how to 
quantify them using probability theory and possibility theory. 

▪ Specifying problem requirements in terms of summary statistics of uncertainty. 

 

 
1Niklas Möller and Sven Ove Hansson. “Principles of Engineering Safety: Risk and Uncertainty Reduction.” In: Reliability Engi-
neering and System Safety 93.6 (Jun. 2008), pp. 798–805. 
2Kush R. Varshney and Homa Alemzadeh. “On the Safety of Machine Learning: Cyber-Physical Systems, Decision Sciences, and 
Data Products.” In: Big Data 5.3 (Sep. 2017), pp. 246–255.  
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▪ Sketching how to update probabilities in light of new information. 

▪ Applying ideas of uncertainty to understand the relationships among different attributes and 
figure out what is independent of what else. 

 

3.1 Grasping Safety 
Safety is the reduction of both aleatoric uncertainty (or risk) and epistemic uncertainty associated with harms. 
First, let’s talk about harm. All systems, including the lending system you’re developing for ThriveGuild, 
yield outcomes based on their state and the inputs they receive. In your case, the input is the applicant’s 
information and the outcome is the decision to approve or deny the loan. From ThriveGuild’s 
perspective (and from the applicant’s perspective, if we’re truly honest about it), a desirable outcome is 
approving an applicant who will be able to pay back their loan and denying an applicant who will not be 
able to pay back their loan. An undesirable outcome is the opposite. Outcomes have associated costs, 
which could be in monetary or other terms. An undesired outcome is a harm if its cost exceeds some 
threshold. Unwanted outcomes of small severity, like getting a poor movie recommendation, are not 
counted as harms.  

In the same way that harms are undesired outcomes whose cost exceeds some threshold, trust only 
develops in situations where the stakes exceed some threshold.3 Remember from Chapter 1 that the 
trustor has to be vulnerable to the trustee for trust to develop, and the trustor does not become 
vulnerable if the stakes are not high enough. Thus safety-critical applications are not only the ones in 
which trust of machine learning systems is most relevant and important, they are also the ones in which 
trust can actually be developed.  

Now, let’s talk about aleatoric and epistemic uncertainty, starting with uncertainty in general. 
Uncertainty is the state of current knowledge in which something is not known. ThriveGuild does not 
know if borrowers will or will not default on loans given to them. All applications of machine learning 
have some form of uncertainty. There are two main types of uncertainty: aleatoric uncertainty and 
epistemic uncertainty.4  

Aleatoric uncertainty, also known as statistical uncertainty, is inherent randomness or stochasticity 
in an outcome that cannot be further reduced. Etymologically derived from dice games, aleatoric 
uncertainty is used to represent phenomena such as vigorously flipped coins and vigorously rolled dice, 
thermal noise, and quantum mechanical effects. Incidents that will befall a ThriveGuild loan applicant 
in the future, such as the roof of their home getting damaged by hail, may be subject to aleatoric 
uncertainty. Risk is the average outcome under aleatoric uncertainty. 

On the other hand, epistemic uncertainty, also known as systematic uncertainty, refers to knowledge 
that is not known in practice, but could be known in principle. The acquisition of this knowledge would 

 

 
3Alon Jacovi, Ana Marasović, Tim Miller, and Yoav Goldberg. “Formalizing Trust in Artificial Intelligence: Prerequisites, Causes 
and Goals of Human Trust in AI.” In: Proceedings of the ACM Conference on Fairness, Accountability, and Transparency. Mar. 2021, pp. 
624–635. 
4Eyke Hüllermeier and Willem Waegeman. “Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Con-
cepts and Methods.” In: Machine Learning 110.3 (Mar. 2021), pp. 457–506.  
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reduce the epistemic uncertainty. ThriveGuild’s epistemic uncertainty about an applicant’s loan-
worthiness can be reduced by doing an employment verification. 

“Not knowing the chance of mutually exclusive events and knowing the chance to be 
equal are two quite different states of knowledge.” 

—Ronald A. Fisher, statistician and geneticist 

Whereas aleatoric uncertainty is inherent, epistemic uncertainty depends on the observer. Do all 
observers have the same amount of uncertainty? If yes, you are dealing with aleatoric uncertainty. If 
some observers have more uncertainty and some observers have less uncertainty, then you are dealing 
with epistemic uncertainty.  

The two uncertainties are quantified in different ways. Aleatoric uncertainty is quantified using 
probability and epistemic uncertainty is quantified using possibility. You have probably learned 
probability theory before, but it is possible that possibility theory is new to you. We’ll dive into the details 
in the next section. To repeat the definition of safety in other words: safety is the reduction of the probability 
of expected harms and the possibility of unexpected harms. Problem specifications for trustworthy machine 
learning need to include both parts, not just the first part. 

The reduction of aleatoric uncertainty is associated with the first attribute of trustworthiness (basic 
performance). The reduction of epistemic uncertainty is associated with the second attribute of 
trustworthiness (reliability). A summary of the characteristics of the two types of uncertainty is shown 
in Table 3.1. Do not take the shortcut of focusing only on aleatoric uncertainty when developing your 
machine learning model; make sure that you focus on epistemic uncertainty as well. 

Table 3.1. Characteristics of the two types of uncertainty. 

Type Definition Source Quantification Attribute of Trustworthiness 
aleatoric randomness inherent probability basic performance 

epistemic 
lack of 
knowledge 

observer-
dependent 

possibility reliability 

 

3.2 Quantifying Safety with Different Types of Uncertainty 
Your goal in the problem specification phase of the machine learning lifecycle is to work with the 
ThriveGuild problem owner to set quantitative requirements for the system you are developing. Then in 
the later parts of the lifecycle, you can develop models to meet those requirements. So you need a 
quantification of safety and thus quantifications of costs of outcomes (are they harms or not), aleatoric 
uncertainty, and epistemic uncertainty. Quantifying these things requires the introduction of several 
concepts, including: sample space, outcome, event, probability, random variable, and possibility.  
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3.2.1 Sample Spaces, Outcomes, Events, and Their Costs 
The first concept is the sample space, denoted as the set Ω, that contains all possible outcomes. 
ThriveGuild’s lending decisions have the sample space Ω = {approve, deny}. The sample space for one 
of the applicant features, employment status, is Ω = {employed, unemployed, other}.  

Toward quantification of sample spaces and safety, the cardinality or size of a set is the number of 
elements it contains, and is denoted by double bars ‖∙‖. A finite set contains a natural number of 
elements. An example is the set {12, 44, 82} which contains three elements, so ‖{12, 44, 82}‖ = 3. An 
infinite set contains an infinite number of elements. A countably infinite set, although infinite, contains 
elements that you can start counting, by calling the first element ‘one,’ the second element ‘two,’ the 
third element ‘three,’ and so on indefinitely without end. An example is the set of integers. Discrete values 
are from either finite sets or countably infinite sets. An uncountably infinite set is so dense that you can’t 
even count the elements. An example is the set of real numbers. Imagine counting all the real numbers 
between 2 and 3—you cannot ever enumerate all of them. Continuous values are from uncountably 
infinite sets. 

An event is a set of outcomes (a subset of the sample space Ω). For example, one event is the set of 
outcomes {employed, unemployed}. Another event is the set of outcomes {employed, other}. A set 
containing a single outcome is also an event. You can assign a cost to either an outcome or to an event. 
Sometimes these costs are obvious because they relate to some other quantitative loss or gain in units 
such as money. Other times, they are more subjective: how do you really quantify the cost of the loss of 
life? Getting these costs can be very difficult because it requires people and society to provide their value 
judgements numerically. Sometimes, relative costs rather than absolute costs are enough. Again, only 
undesirable outcomes or events with high enough costs are considered to be harms. 

3.2.2 Aleatoric Uncertainty and Probability 
Aleatoric uncertainty is quantified using a numerical assessment of the likelihood of occurrence of event 
A, known as the probability 𝑃(𝐴). It is the ratio of the cardinality of the event 𝐴 to the cardinality of the 
sample space Ω:5 

𝑃(𝐴) =
‖𝐴‖

‖Ω‖
. 

Equation 3.1 

The properties of the probability function are: 

1. 𝑃(𝐴) ≥ 0, 

2. 𝑃(Ω) = 1, and 

3. if 𝐴 and 𝐵 are disjoint events (they have no outcomes in common; 𝐴 ∩ 𝐵 =  ∅), then 𝑃(𝐴 ∪ 𝐵) =

𝑃(𝐴) + 𝑃(𝐵). 

 

 
5Equation 3.1 is only valid for finite sample spaces, but the same high-level idea holds for infinite sample spaces.  
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These three properties are pretty straightforward and just formalize what we normally mean by 
probability. A probability of an event is a number between zero and one. The probability of one event or 
another event happening is the sum of their individual probabilities as long as the two events don’t 
contain any of the same outcomes. 

The probability mass function (pmf) makes life easier in describing probability for discrete sample 
spaces. It is a function 𝑝 that takes outcomes ω as input and gives back probabilities for those outcomes. 
The sum of the pmf across all outcomes in the sample space is one, ∑ 𝑝(ω)ω∈Ω = 1, which is needed to 
satisfy the second property of probability.  

The probability of an event is the sum of the pmf values of its constituent outcomes. For example, if 
the pmf of employment status is 𝑝(employed) = 0.60, 𝑝(unemployed) = 0.05, and 𝑝(other) = 0.35, then 
the probability of event {employed, other} is 𝑃({employed, other}) = 0.60 + 0.35 = 0.95. This way of 
adding pmf values to get an overall probability works because of the third property of probability. 

Random variables are a really useful concept in specifying the safety requirements of machine 
learning problems. A random variable 𝑋 takes on a specific numerical value 𝑥 when 𝑋 is measured or 
observed; that numerical value is random. The set of all possible values of 𝑋 is 𝒳. The probability 
function for the random variable 𝑋 is denoted 𝑃𝑋. Random variables can be discrete or continuous. They 
can also represent categorical outcomes by mapping the outcome values to a finite set of numbers, e.g. 
mapping {employed, unemployed, other} to {0, 1, 2}. The pmf of a discrete random variable is written as 
𝑝𝑋(𝑥). 

Pmfs don’t exactly make sense for uncountably infinite sample spaces. So the cumulative distribution 
function (cdf) is used instead. It is the probability that a continuous random variable 𝑋 takes a value less 
than or equal to some sample point 𝑥, i.e. 𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥). An alternative representation is the 
probability density function (pdf) 𝑝𝑋(𝑥) = 𝑑

𝑑𝑥
𝐹𝑋(𝑥), the derivative of the cdf with respect to 𝑥.6 The value of a 

pdf is not a probability, but integrating a pdf over a set yields a probability.  
To better understand cdfs and pdfs, let’s look at one of the ThriveGuild features you’re going to use 

in your machine learning lending model: the income of the applicant. Income is a continuous random 
variable whose cdf may be, for example:7 

𝐹𝑋(𝑥) = {
1 − 𝑒−0.5𝑥, 𝑥 ≥ 0

0, otherwise
. 

Equation 3.2 

Figure 3.1 shows what this distribution looks like and how to compute probabilities from it. It shows that 
the probability that the applicant’s income is less than or equal to 2 (in units such as ten thousand 
dollars) is 1 − 𝑒−0.5∙2 = 1 − 𝑒−1 ≈ 0.63. Most borrowers tend to earn less than 2. The pdf is the derivative 
of the cdf:  

 

 
6I overload the notation 𝑝𝑋; it should be clear from the context whether I’m referring to a pmf or pdf.  
7This specific choice is an exponential distribution. The general form of an exponential distribution is: 𝑝𝑋(𝑥) =

{λ𝑒−λ𝑥, 𝑥 ≥ 0
0, otherwise

, for any λ > 0.  
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𝑝𝑋(𝑥) = {
0.5𝑒−0.5𝑥, 𝑥 ≥ 0

0, otherwise
. 

Equation 3.3 

 
Figure 3.1. An example cdf and corresponding pdf from the ThriveGuild income distribution example. Accessi-
ble caption. A graph at the top shows the cdf and a graph at the bottom shows its corresponding pdf. 
Differentiation is the operation to go from the top graph to the bottom graph. Integration is the opera-
tion to go from the bottom graph to the top graph. The top graph shows how to read off a probability 
directly from the value of the cdf. The bottom graph shows that obtaining a probability requires inte-
grating the pdf over an interval. 

Joint pmfs, cdfs, and pdfs of more than one random variable are multivariate functions and can 
contain a mix of discrete and continuous random variables. For example, 𝑝𝑋,𝑌,𝑍(𝑥, 𝑦, 𝑧) is the notation for 
the pdf of three random variables 𝑋, 𝑌, and 𝑍. To obtain the pmf or pdf of a subset of the random 
variables, you sum the pmf or integrate the pdf over the rest of the variables outside of the subset you 
want to keep. This act of summing or integrating is known as marginalization and the resulting 
probability distribution is called the marginal distribution. You should contrast the use of the term 
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‘marginalize’ here with the social marginalization that leads individuals and groups to be made 
powerless by being treated as insignificant. 

The employment status feature and the loan approval label in the ThriveGuild model are random 
variables that have a joint pmf. For example, this multivariate function could be 𝑝(employed, approve) =

0.20, 𝑝(employed, deny) = 0.40, 𝑝(unemployed, approve) = 0.01, 𝑝(unemployed, deny) = 0.04, 
𝑝(other, approve) = 0.10, and 𝑝(other, deny) = 0.25. This function is visualized as a table of probability 
values in Figure 3.2. Summing loan approval out from this joint pmf, you recover the marginal pmf for 
employment status given earlier. Summing employment status out, you get the marginal pmf for loan 
approval as 𝑝(approve) = 0.31 and 𝑝(deny) = 0.69. 

 
Figure 3.2. Examples of marginalizing a joint distribution by summing out one of the random variables. Acces-
sible caption. A table of the joint pmf has employment status as the columns and loan approval as the 
rows. The entries are the probabilities. Adding the numbers in the columns gives the marginal pmf of 
employment status. Adding the numbers in the rows gives the marginal pmf of loan approval. 

Probabilities, pmfs, cdfs, and pdfs are all tools for quantifying aleatoric uncertainty. They are used 
to specify the requirements for the accuracy of models, which is critical for the first of the two parts of 
safety: risk minimization. A correct prediction is an event and the probability of that event is the 
accuracy. For example, working with the problem owner, you may specify that the ThriveGuild lending 
model must have at least a 0.92 probability of being correct. The accuracy of machine learning models 
and other similar measures of basic performance are the topic of Chapter 6 in Part 3 of the book.  
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3.2.3 Epistemic Uncertainty and Possibility 
Aleatoric uncertainty is concerned with chance whereas epistemic uncertainty is concerned with 
imprecision, ignorance, and lack of knowledge. Probabilities are good at capturing notions of 
randomness, but betray us in representing a lack of knowledge. Consider the situation in which you have 
no knowledge of the employment and unemployment rates in a remote country. It is not appropriate for 
you to assign any probability distribution to the outcomes employed, unemployed, and other, not even 
equal probabilities to the possible outcomes because that would express a precise knowledge of equal 
chances. The only thing you can say is that the outcome will be from the set Ω =

 {employed, unemployed, other}.  
Thus, epistemic uncertainty is best represented using sets without any further numeric values. You 

might be able to specify a smaller subset of outcomes, but not have precise knowledge of likelihoods 
within the smaller set. In this case, it is not appropriate to use probabilities. The subset distinguishes 
between outcomes that are possible and those that are impossible.  

Just like our friend, the real-valued probability function 𝑃(𝐴) for aleatoric uncertainty, there is a 
corresponding possibility function Π(𝐴) for epistemic uncertainty which takes either the value 0 or the 
value 1. A value 0 denotes an impossible event and a value 1 denotes a possible event. In a country in 
which the government offers employment to anyone who seeks it, the possibility of unemployment 
Π(unemployed) is zero. The possibility function satisfies its own set of three properties, which are pretty 
similar to the three properties of probability: 

1. Π(∅) = 0, 

2. Π(Ω) = 1, and 

3. if 𝐴 and 𝐵 are disjoint events (they have no outcomes in common; 𝐴 ∩ 𝐵 =  ∅), then Π(𝐴 ∪ 𝐵) =

max(Π(𝐴), Π(𝐵)). 

One difference is that the third property of possibility contains maximum, whereas the third property of 
probability contains addition. Probability is additive, but possibility is maxitive. The probability of an 
event is the sum of the probabilities of its constituent outcomes, but the possibility of an event is the 
maximum of the possibilities of its constituent outcomes. This is because possibilities can only be zero 
or one. If you have two events, both of which have possibility equal to one, and you want to know the 
possibility of one or the other occurring, it does not make sense to add one plus one to get two, you should 
take the maximum of one and one to get one. 

You should use possibility in specifying requirements for the ThriveGuild machine learning system 
to address the epistemic uncertainty (reliability) side of the two-part definition of safety. For example, 
there will be epistemic uncertainty in what the best possible model parameters are if there is not enough 
of the right training data. (The data you ideally want to have is from the present, from a fair and just 
world, and that has not been corrupted. However, you’re almost always out of luck and have data from 
the past, from an unjust world, or that has been corrupted.) The data that you have can bracket the 
possible set of best parameters through the use of the possibility function. Your data tells you that one 
set of model parameters is possibly the best set of parameters, and that it is impossible for other different 
sets of model parameters to be the best. Problem specifications can place limits on the cardinality of the 
possibility set. Dealing with epistemic uncertainty in machine learning is the topic of Part 4 of the book 
in the context of generalization, fairness, and adversarial robustness. 
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3.3 Summary Statistics of Uncertainty 
Full probability distributions are great to get going with problem specification, but can be unwieldy to 
deal with. It is easier to set problem specifications using summary statistics of probability distributions 
and random variables. 

3.3.1 Expected Value and Variance 
The most common statistic is the expected value of a random variable. It is the mean of its distribution: a 
typical value or long-run average outcome. It is computed as the integral of the pdf multiplied by the 
random variable: 

𝐸[𝑋] = ∫ 𝑥𝑝𝑋(𝑥)𝑑𝑥
∞

−∞

. 

Equation 3.4 

Recall that in the example earlier, ThriveGuild borrowers had the income pdf 0.5𝑒−0.5𝑥 for 𝑥 ≥ 0 and zero 
elsewhere. The expected value of income is thus ∫ 𝑥0.5𝑒−0.5𝑥∞

0
𝑑𝑥 = 2.8 When you have a bunch of samples 

drawn from the probability distribution of 𝑋, denoted {𝑥1, 𝑥2, … , 𝑥𝑛}, then you can compute an empirical 
version of the expected value, the sample mean, as 𝑥̅ =

1

𝑛
∑ 𝑥𝑗

𝑛
𝑗=1 . Not only can you compute the expected 

value of a random variable alone, but also the expected value of any function of a random variable. It is 
the integral of the pdf multiplied by the function. Through expected values of performance, also known 
as risk, you can specify average behaviors of systems being within certain ranges for the purposes of 
safety. 

How much variability in income should you plan for among ThriveGuild applicants? An important 
expected value is the variance 𝐸[(𝑋 − 𝐸[𝑋])2], which measures the spread of a distribution and helps 
answer the question. Its sample version, the sample variance is computed as 1

𝑛−1
∑ (𝑥𝑗 − 𝑥̅)

2𝑛
𝑗=1 . The 

correlation between two random variables 𝑋 (e.g., income) and 𝑌 (e.g., loan approval) is also an expected 
value, 𝐸[𝑋𝑌], which tells you whether there is some sort of statistical relationship between the two 
random variables. The covariance, 𝐸[(𝑋 − 𝐸[𝑋])(𝑌 − 𝐸[𝑌])]  =  𝐸[𝑋𝑌]  −  𝐸[𝑋]𝐸[𝑌], tells you whether if one 
random variable increases, the other will also increase, and vice versa. These different expected values 
and summary statistics give different insights about aleatoric uncertainty that are to be constrained in 
the problem specification. 

3.3.2 Information and Entropy 
Although means, variances, correlations, and covariances capture a lot, there are other kinds of 
summary statistics that capture different insights needed to specify machine learning problems. A 
different way to summarize aleatoric uncertainty is through the information of random variables. Part of 
information theory, the information of a discrete random variable 𝑋 with pmf 𝑝𝑋(𝑥) is 𝐼(𝑥) = − log(𝑝𝑋(𝑥)). 
This logarithm is usually in base 2. For very small probabilities close to zero, the information is very 
large. This makes sense since the occurrence of a rare event (an event with small probability) is deemed 

 

 
8The expected value of a generic exponentially-distributed random variable is 1 λ⁄ .   
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very informative. For probabilities close to one, the information is close to zero because common 
occurrences are not informative. Do you go around telling everyone that you did not win the lottery? 
Probably not, because it is not informative. The expected value of the information of 𝑋 is its entropy: 

𝐻(𝑋) = 𝐸[𝐼(𝑋)] = − ∑ 𝑝𝑋(𝑥)

𝑥∈𝒳

log(𝑝𝑋(𝑥)). 

Equation 3.5 

Uniform distributions with equal probability for all outcomes have maximum entropy among all 
possible distributions. The difference between the maximum entropy achieved by the uniform 
distribution and the entropy of a given random variable is the redundancy. It is known as the Theil index 
when used to summarize inequality in a population. For a discrete random variable 𝑋 taking non-
negative values, which is usually the case when measuring assets, income, or wealth of individuals, the 
Theil index is: 

Theil index = ∑ 𝑝𝑋(𝑥)
𝑥

𝐸[𝑋]
log (

𝑥

𝐸[𝑋]̅̅ ̅̅ ̅̅
)

𝑥∈𝒳

, 

Equation 3.6 

where 𝒳 = {0,1, … , ∞} and the logarithm is the natural logarithm. The index’s values range from zero to 
one. The entropy-maximizing distribution in which all members of a population have the same value, 
which is the mean value, has zero Theil index and represents the most equality. A Theil index of one 
represents the most inequality. It is achieved by a pmf with one non-zero value and all other zero values. 
(Think of one lord and many serfs.) In Chapter 10, you’ll see how to use the Theil index to specify 
machine learning systems in terms of their individual fairness and group fairness requirements 
together. 

3.3.3 Kullback-Leibler Divergence and Cross-Entropy 
The Kullback-Leibler (K-L) divergence compares two probability distributions and gives a different avenue 
for problem specification. For two discrete random variables defined on the same sample space with 
pmfs 𝑝(𝑥) and 𝑞(𝑥), the K-L divergence is: 

𝐷(𝑝 ∥ 𝑞) = − ∑ 𝑝(𝑥)

𝑥∈𝒳

log (
𝑝(𝑥)

𝑞(𝑥)
). 

Equation 3.7 

It measures how similar or different two distributions are. Similarity of one distribution to a reference 
distribution is often a requirement in machine learning systems.  
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The cross-entropy is another quantity defined for two random variables on the same sample space 
that represents the average information in one random variable with pmf 𝑝(𝑥) when described using a 
different random variable 𝑞(𝑥): 

𝐻(𝑝 ∥ 𝑞) = − ∑ 𝑝(𝑥)

𝑥∈𝒳

log(𝑞(𝑥)). 

Equation 3.8 

As such, it is the entropy of the first random variable plus the K-L divergence between the two variables: 

𝐻(𝑝 ∥ 𝑞) = 𝐻(𝑝) + 𝐷(𝑝 ∥ 𝑞). 

Equation 3.9 

When 𝑝 = 𝑞, then 𝐻(𝑝 ∥ 𝑞) = 𝐻(𝑝) because the K-L divergence term goes to zero and there is no 
remaining mismatch between 𝑝 and 𝑞. Cross-entropy is used as an objective for training neural networks 
as you’ll see in Chapter 7. 

3.3.4 Mutual Information 
As the last summary statistic of aleatoric uncertainty in this section, let’s talk about mutual information. 
It is the K-L divergence between a joint distribution 𝑝𝑋,𝑌(𝑥, 𝑦) and the product of its marginal 
distributions 𝑝𝑋(𝑥)𝑝𝑌(𝑦): 

𝐼(𝑋, 𝑌) = 𝐷 (𝑝𝑋,𝑌(𝑥, 𝑦) ∥ 𝑝𝑋(𝑥)𝑝𝑌(𝑦)). 

Equation 3.10 

It is symmetric in its two arguments and measures how much information is shared between 𝑋 and 𝑌. 
In Chapter 5, mutual information is used to set a constraint on privacy: the goal of not sharing 
information. It crops up in many other places as well. 

 

3.4 Conditional Probability  
When you’re looking at all the different random variables available to you as you develop ThriveGuild’s 
lending system, there will be many times that you get more information by measuring or observing some 
random variables, thereby reducing your epistemic uncertainty about them. Changing the possibilities 
of one random variable through observation can in fact change the probability of another random 
variable. The random variable 𝑌 given that the random variable 𝑋 takes value 𝑥 is not the same as just 
the random variable 𝑌 on its own. The probability that you would approve a loan application without 
knowing any specifics about the applicant is different from the probability of your decision if you knew, 
for example, that the applicant is employed. 
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This updated probability is known as a conditional probability and is used to quantify a probability 
when you have additional information that the outcome is part of some event. The conditional 
probability of event 𝐴 given event 𝐵 is the ratio of the cardinality of the joint event 𝐴 and 𝐵, to the 
cardinality of the event 𝐵:9 

𝑃( 𝐴 ∣ 𝐵 ) =
‖𝐴 ∩ 𝐵‖

‖𝐵‖
=

𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
. 

Equation 3.11 

In other words, the sample space changes from Ω to 𝐵, so that is why the denominator of Equation 3.1 
(‖𝐴‖/‖Ω‖) changes from Ω to 𝐵 in Equation 3.11. The numerator ‖𝐴 ∩ 𝐵‖ captures the part of the event 𝐴 
that is within the new sample space 𝐵. There are similar conditional versions of pmfs, cdfs, and pdfs 
defined for random variables.  

Through conditional probability, you can reason not only about distributions and summaries of 
uncertainty, but also how they change when observations are made, outcomes are revealed, and 
evidence is collected. Using a machine learning model is similar to getting the conditional probability of 
the label given the feature values of an input data point. The probability of loan approval given the 
features for one specific applicant being employed with an income of 15,000 dollars is a conditional 
probability. 

In terms of summary statistics, the conditional entropy of 𝑌 given 𝑋 is: 

𝐻( 𝑌 ∣ 𝑋 ) = − ∑ ∑ 𝑝𝑌,𝑋(𝑦, 𝑥)

𝑥∈𝒳

log (
𝑝𝑌,𝑋(𝑦, 𝑥)

𝑝𝑋(𝑥)
)

𝑦∈𝒴

. 

Equation 3.12 

It represents the average information remaining in 𝑌 given that 𝑋 is observed.   
Mutual information can also be written using conditional entropy as: 

𝐼(𝑋, 𝑌) = 𝐻(𝑌) − 𝐻( 𝑌 ∣ 𝑋 ) = 𝐻(𝑋) − 𝐻( 𝑋 ∣ 𝑌 ). 

Equation 3.13 

In this form, you can see that mutual information quantifies the reduction in entropy in a random 
variable by conditioning on another random variable. In this role, it is also known as information gain, 
and used as a criterion for learning decision trees in Chapter 7. Another common criterion for learning 
decision trees is the Gini index: 

 

 

 
9Event 𝐵 has to be non-empty and the sample space has to be finite for this definition to be applicable. 



Safety | 35 

 

Gini index = 1 − ∑ 𝑝𝑋
2(𝑥)

𝑥∈𝒳

. 

Equation 3.14 

3.5 Independence and Bayesian Networks 
Understanding uncertainty of random variables becomes easier if you can determine that some of them 
are unlinked. For example, if certain features are unlinked to other features and also to the label, then 
they do not have to be considered in a machine learning problem specification.  

3.5.1 Statistical Independence 
Towards the goal of understanding unlinked variables, let’s define the important concept called 
statistical independence. Two events are mutually independent if one outcome is not informative of the 
other outcome. The statistical independence between two events is denoted 𝐴 ⫫ 𝐵 and is defined by 

𝐴 ⫫ 𝐵 ⇔ 𝑃( 𝐴 ∣ 𝐵 ) = 𝑃(𝐴). 

Equation 3.15 

Knowledge of the tendency of 𝐴 to occur given that 𝐵 has occurred is not changed by knowledge of 𝐵. If 
in ThriveGuild’s data, 𝑃( employed ∣∣ deny ) = 0.50 and 𝑃(employed) = 0.60, then since the two numbers 
0.50 and 0.60 are not the same, employment status and loan approval are not independent, they are 
dependent. Employment status is used in loan approval decisions. The definition of conditional 
probability further implies that: 

𝐴 ⫫ 𝐵 ⇔ 𝑃(𝐴, 𝐵) = 𝑃(𝐴)𝑃(𝐵). 

Equation 3.16 

The probability of the joint event is the product of the marginal probabilities. Moreover, if two random 
variables are independent, their mutual information is zero. 

The concept of independence can be extended to more than two events. Mutual independence 
among several events is more than simply a collection of pairwise independence statements; it is a 
stronger notion. A set of events is mutually independent if any of the constituent events is independent 
of all subsets of events that do not contain that event. The pdfs, cdfs, and pmfs of mutually independent 
random variables can be written as the products of the pdfs, cdfs, and pmfs of the individual constituent 
random variables. One commonly used assumption in machine learning is of independent and identically 
distributed (i.i.d.) random variables, which in addition to mutual independence, states that all of the 
random variables under consideration have the same probability distribution.  

A further concept is conditional independence, which involves at least three events. The events 𝐴 and 
𝐵 are conditionally independent given 𝐶, denoted 𝐴 ⫫ 𝐵 ∣ 𝐶, when knowledge of the tendency of 𝐴 to 
occur given that 𝐵 has occurred is not changed by knowledge of 𝐵 precisely when it is known that 𝐶 
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occurred. Similar to the unconditional case, the probability of the joint conditional event is the product 
of the marginal conditional probabilities under conditional independence. 

𝐴 ⫫ 𝐵 ∣ 𝐶 ⇔ 𝑃( 𝐴 ∩ 𝐵 ∣ 𝐶 ) = 𝑃( 𝐴 ∣ 𝐶 )𝑃( 𝐵 ∣ 𝐶 ). 

Equation 3.17 

Conditional independence also extends to random variables and their pmfs, cdfs, and pdfs.  

3.5.2 Bayesian Networks 
To get the full benefit of the simplifications from independence, you should trace out all the different 
dependence and independence relationships among the applicant features and the loan approval 
decision. Bayesian networks, also known as directed probabilistic graphical models, serve this purpose. 
They are a way to represent a joint probability of several events or random variables in a structured way 
that utilizes conditional independence. The name graphical model arises because each event or random 
variable is represented as a node in a graph and edges between nodes represent dependencies, shown 
in the example of Figure 3.3, where 𝐴1 is income, 𝐴2 is employment status, 𝐴3 is loan approval, and 𝐴4 is 
gender. The edges have an orientation or direction: beginning at parent nodes and ending at child nodes. 
Employment status and gender have no parents; employment status is the parent of income; both 
income and employment status are the parents of loan approval. The set of parents of the argument 
node is denoted 𝑝𝑎(⋅). 

             
Figure 3.3. An example graphical model consisting of four events. The employment status and gender nodes have 
no parents; employment status is the parent of income, and thus there is an edge from employment status to in-
come; both income and employment status are the parents of loan approval, and thus there are edges from income 
and from employment status to loan approval. The graphical model is shown on the left with the names of the 
events and on the right with their symbols.  

The statistical relationships are determined by the graph structure. The probability of several events 
𝐴1, … , 𝐴𝑛 is the product of all the events conditioned on their parents: 

𝑃(𝐴1, … , 𝐴𝑛) = ∏ 𝑃 ( 𝐴𝑗 ∣
∣ 𝑝𝑎(𝐴𝑗) )

𝑛

𝑗=1

. 

Equation 3.18 
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As a special case of Equation 3.18 for the graphical model in Figure 3.3, the corresponding probability 
may be written as 𝑃(𝐴1, 𝐴2, 𝐴3, 𝐴4) = 𝑃( 𝐴1 ∣∣ 𝐴2 )𝑃(𝐴2)𝑃( 𝐴3 ∣∣ 𝐴1, 𝐴2 )𝑃(𝐴4). Valid probability distributions 
lead to directed acyclic graphs. Graphs are acyclic if you follow a path of arrows and can never return to 
nodes you started from. An ancestor of a node is any node that is its parent, parent of its parent, parent 
of its parent of its parent, and so on recursively. 

From the small and simple graph structure in Figure 3.3, it is clear that the loan approval depends 
on both income and employment status. Income depends on employment status. Gender is independent 
of everything else. Making independence statements is more difficult in larger and more complicated 
graphs, however. Determining all of the different independence relationships among all the events or 
random variables is done through the concept of d-separation: a subset of nodes 𝑆1 is independent of 
another subset of nodes 𝑆2 conditioned on a third subset of nodes 𝑆3 if 𝑆3 d-separates 𝑆1 and 𝑆2. One way 
to explain d-separation is through the three different motifs of three nodes each shown in Figure 3.4, 
known as a causal chain, common cause, and common effect. The differences among the motifs are in the 
directions of the arrows. The configurations on the left have no node that is being conditioned upon, i.e. 
no node’s value is observed. In the configurations on the right, node 𝐴3 is being conditioned upon and is 
thus shaded. The causal chain and common cause motifs without conditioning are connected. The causal 
chain and common cause with conditioning are separated: the path from 𝐴1 to 𝐴2 is blocked by the 
knowledge of 𝐴3. The common effect motif without conditioning is separated; in this case, 𝐴3 is known 
as a collider. Common effect with conditioning is connected; moreover, conditioning on any descendant 
of 𝐴3 yields a connected path between 𝐴1 and 𝐴2. Finally, a set of nodes 𝑆1 and 𝑆2 is d-separated 
conditioned on a set of nodes 𝑆3 if and only if each node in 𝑆1 is separated from each node in 𝑆2.10  

 

causal chain 

 
connected 

 
separated 

common cause 

 
connected 

 
separated 

common effect 
 

 

separated 

 
(or any descendent of 𝐴3 observed) 

connected 

Figure 3.4. Configurations of nodes and edges that are connected and separated. Nodes colored gray have been 
observed. Accessible caption. The causal chain is 𝐴1 → 𝐴3 → 𝐴2; it is connected when 𝐴3 is unobserved 
and separated when 𝐴3 is observed. The common cause is 𝐴1  𝐴3 → 𝐴2; it is connected when 𝐴3 is un-
observed and separated when 𝐴3 is observed. The common effect is 𝐴1 → 𝐴3  𝐴2; it is separated when 
𝐴3 is unobserved and connected when 𝐴3 or any of its descendants are observed. 

 

 
10There may be dependence not captured in the structure if one random variable is a deterministic function of another.  
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Although d-separation among two sets of nodes can be checked by checking all three-node motifs 
along all paths between the two sets, there is a more constructive algorithm to check for d-separation.  

1. Construct the ancestral graph of 𝑆1, 𝑆2, and 𝑆3. This is the subgraph containing the nodes in 𝑆1, 𝑆2, 
and 𝑆3 along with all of their ancestors and all of the edges among these nodes. 

2. For each pair of nodes with a common child, draw an undirected edge between them. This step 
is known as moralization.11 

3. Make all edges undirected. 

4. Delete all 𝑆3 nodes. 

5. If 𝑆1 and 𝑆2 are separated in the undirected sense, then they are d-separated. 

An example is shown in Figure 3.5. 

 
Figure 3.5. An example of running the constructive algorithm to check for d-separation. Accessible caption. 
The original graph has edges from 𝐴1 and 𝐴2 to 𝐴3, from 𝐴3 to 𝐴4 and 𝐴5, and from 𝐴4 to 𝐴6. 𝑆1 contains 
only 𝐴4, 𝑆2 contains only 𝐴5, and 𝑆3 contains 𝐴2 and 𝐴3. After step 1, 𝐴6 is removed. After step 2, an un-
directed edge is drawn between 𝐴1 and 𝐴2. After step 3, all edges are undirected. After step 4, only 𝐴1, 
𝐴4, and 𝐴5 remain and there are no edges. After step 5, only 𝐴4 and 𝐴5, and equivalently 𝑆1 and 𝑆2, re-
main and there is no edge between them. They are separated, so 𝑆1 and 𝑆2 are d-separated conditioned 
on 𝑆3. 

 

 
11The term moralization reflects a value of some but not all societies: that it is moral for the parents of a child to be married.  
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3.5.3 Conclusion 
Independence and conditional independence allow you to know whether random variables affect one 
another. They are fundamental relationships for understanding a system and knowing which parts can 
be analyzed separately while determining a problem specification. One of the main benefits of graphical 
models is that statistical relationships are expressed through structural means. Separations are more 
clearly seen and computed efficiently.  
 

3.6 Summary 
▪ The first two attributes of trustworthiness, accuracy and reliability, are captured together 

through the concept of safety. 

▪ Safety is the minimization of the aleatoric uncertainty and the epistemic uncertainty of 
undesired high-stakes outcomes. 

▪ Aleatoric uncertainty is inherent randomness in phenomena. It is well-modeled using 
probability theory. 

▪ Epistemic uncertainty is lack of knowledge that can, in principle, be reduced. Often in practice, 
however, it is not possible to reduce epistemic uncertainty.  It is well-modeled using possibility 
theory. 

▪ Problem specifications for trustworthy machine learning systems can be quantitatively 
expressed using probability and possibility. 

▪ It is easier to express these problem specifications using statistical and information-theoretic 
summaries of uncertainty than full distributions.  

▪ Conditional probability allows you to update your beliefs when you receive new measurements. 

▪ Independence and graphical models encode random variables not affecting one another. 

 



40 | Trustworthy Machine Learning 

4  
Data Sources and Biases 

The mission of the (fictional) non-profit organization Unconditionally is charitable giving. It collects 
donations and distributes unconditional cash transfers—funds with no strings attached—to poor 
households in East Africa. The recipients are free to do whatever they like with the money. 
Unconditionally is undertaking a new machine learning project to identify the poorest of the poor 
households to select for the cash donations. The faster they can complete the project, the faster and 
more efficiently they can move much-needed money to the recipients, some of whom need to replace 
their thatched roofs before the rainy season begins. 

The team is in the data understanding phase of the machine learning lifecycle. Imagine that you are 
a data scientist on the team pondering which data sources to use as features and labels to estimate the 
wealth of households. You examine all sorts of data including daytime satellite imagery, nighttime 
illumination satellite imagery, national census data, household survey data, call detail records from 
mobile phones, mobile money transactions, social media posts, and many others. What will you choose 
and why? Will your choices lead to unintended consequences or to a trustworthy system? 

The data understanding phase is a really exciting time in the lifecycle. The problem goals have been 
defined; working with the data engineers and other data scientists, you cannot wait to start acquiring 
data and conducting exploratory analyses. Having data is a prerequisite for doing machine learning, but 
not any data will do. It is important for you and the team to be careful and intentional at this point. Don’t 
take shortcuts. Otherwise, before you know it, you will have a glorious edifice built upon a rocky 
foundation.  

 “Garbage in, garbage out.” 

—Wilf Hey, computer scientist at IBM 

This chapter begins Part 2 of the book focused on all things data (remember the organization of the 
book shown in Figure 4.1). 
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Figure 4.1. Organization of the book. This second part focuses on different considerations of trustworthiness 
when working with data. Accessible caption. A flow diagram from left to right with six boxes: part 1: in-
troduction and preliminaries; part 2: data; part 3: basic modeling; part 4: reliability; part 5: interaction; 
part 6: purpose. Part 2 is highlighted. Parts 3–4 are labeled as attributes of safety. Parts 3–6 are labeled 
as attributes of trustworthiness. 

The chapter digs into how you and Unconditionally’s data engineers and other data scientists should: 

▪ use knowledge of characteristics of different data modalities to evaluate datasets, 

▪ select among different sources of data, and 

▪ appraise datasets for biases and validity. 

Appraising data sets for biases is critical for trustworthiness and is the primary focus of the chapter. The 
better job done at this stage, the less correction and mitigation of harms needs to be done in later stages 
of the lifecycle. Bias evaluation should include input from affected individuals of the planned machine 
learning system. If all possible relevant data is deemed too biased, a conversation with the problem 
owner and other stakeholders on whether to even proceed with the project is a must. (Data privacy and 
consent are investigated in Chapter 5.) 

 

4.1 Modalities 
Traditionally, when most people imagine data, they imagine tables of numbers in an accounting 
spreadsheet coming out of some system of record. However, data for machine learning systems can 
include digital family photographs, surveillance videos, tweets, legislative documents, DNA strings, 
event logs from computer systems, sensor readings over time, structures of molecules, and any other 
information in digital form. In the machine learning context, data is assumed to be a finite number of 
samples drawn from any underlying probability distribution.  

The examples of data given above come from different modalities (images, text, time series, etc.). A 
modality is a category of data defined by how it is received, represented, and understood. Figure 4.2 
presents a mental model of different modalities. There are of course others that are missing from the 
figure. 
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Figure 4.2. A mental model of different modalities of data. Accessible caption. A hierarchy diagram with 
data at its root. Data has children structured and semi-structured. Structured has children tabular and 
graphs. Tabular has children static tabular data, time series, and event streams. Graphs has children 
social networks, physical networks, and molecules. Semi-structured has children signals and se-
quences. Signals has children images, audio, and video. Sequences has children natural language, bio-
logical sequences, and software source code. 

One of Unconditionally’s possible datasets is from a household survey. It is an example of the static 
tabular data modality and part of the structured data category of modalities.1 It is static because it is not 
following some time-varying phenomenon. The columns are different attributes that can be used as 
features and labels, and the rows are different records or sample points, i.e. different people and 
households. The columns contain numeric values, ordinal values, categorical values, strings of text, and 
special values such as dates. Although tabular data might look official, pristine, and flawless at first 
glance due to its nice structure, it can hide all sorts of false assumptions, errors, omissions, and biases. 

Time series constitute another modality that can be stored in tabular form. As measurements at 
regular intervals in time (usually of numeric values), such data can be used to model trends and forecast 
quantities in time. Longitudinal or panel data, repeated measurements of the same individuals over time, 
are often time series. Household surveys are rarely longitudinal however, because they are logistically 
difficult to conduct. Cross-sectional surveys, simply several tabular datasets taken across time but without 
any linking, are logistically much easier to collect because the same individuals do not have to be tracked 
down. 

Another of Unconditionally’s possible datasets is mobile money transactions. Time stamps are a 
critical part of transactions data, but are not time series because they do not occur at regular intervals. 
Every mobile money customer asynchronously generates an event whenever they receive or disburse 
funds, not mediated by any common clock across customers. Transaction data is an example of the event 
stream modality. In addition to a time stamp, event streams contain additional values that are measured 
such as monetary amount, recipient, and items purchased. Other event streams include clinical tests 
conducted in a hospital and social services received by clients. 

 

 
1There are modalities with even richer structure than tabular data, such as graphs that can represent social networks and the 
structure of chemical molecules.  
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Unconditionally can estimate poverty using satellite imagery. Digital images are the modality that 
spurred a lot of the glory showered upon machine learning in the past several years. They are part of the 
semi-structured branch of modalities. In general, images can be regular optical images or ones measured 
in other ranges of the electromagnetic spectrum. They are composed of numeric pixel values across 
various channels in their raw form and tend to contain a lot of spatial structure. Video, an image sequence 
over time, has a lot of spatiotemporal structure. Modern machine learning techniques learn these spatial 
and spatiotemporal representations by being trained on vast quantities of data, which may themselves 
contain unwanted biases and unsuitable content. (The model for the specified problem is a fine-tuned 
version of the model pre-trained on the large-scale, more generic dataset. These large pre-trained 
models are referred to as foundation models.) Videos may also contain audio signals.  

One of your colleagues at Unconditionally imagines that although less likely, the content of text 
messages and social media posts might predict a person’s poverty level. This modality is natural language 
or text. Longer documents, including formal documents and publications, are a part of the same 
modality. The syntax, semantics, and pragmatics of human language is complicated. One way of dealing 
with text includes parsing the language and creating a syntax tree. Another way is representing text as 
sparse structured data by counting the existence of individual words, pairs of words, triplets of words, 
and so on in a document. These bag-of-words or n-gram representations are currently being superseded 
by a third way: sophisticated large language models, a type of foundation model, trained on vast corpora 
of documents. Just like in learning spatial representations of images, the learning of language models 
can be fraught with many different biases, especially when the norms of the language in the training 
corpus do not match the norms of the application. A language model trained on a humongous pile of 
newspaper articles from the United States will typically not be a good foundation for a representation 
for short, informal, code-mixed text messages in East Africa.2  

Typically, structured modalities are their own representations for modeling and correspond to 
deliberative decision making by people, whereas semi-structured modalities require sophisticated 
transformations and correspond to instinctive perception by people. These days, the sophisticated 
transformations for semi-structured data tend to be learned using deep neural networks that are trained 
on unimaginably large datasets. This process is known as representation learning. Any biases present in 
the very large background datasets carry over to models fine-tuned on a problem-specific dataset 
because of the originally opaque and uncontrollable representation learning leading to the foundation 
model. As such, with semi-structured data, it is important that you not only evaluate the problem-
specific dataset, but also the background dataset. With structured datasets, it is more critical that you 
analyze data preparation and feature engineering.3 

4.2 Data Sources 
Not only do the various kinds of data being considered by Unconditionally vary by modality, they also 
vary by how and where they come from, i.e., their provenance. As part of data understanding, your team 

 

 
2Other strings with language-like characteristics such as DNA or amino acid sequences and software source code are currently 
being approached through techniques similar to natural language processing.  
3There are new foundation models for structured modalities. Inkit Padhi, Yair Schiff, Igor Melnyk, Mattia Rigotti, Youssef 
Mroueh, Pierre Dognin, Jerret Ross, Ravi Nair, and Erik Altman. “Tabular Transformers for Modeling Multivariate Time Se-
ries.” In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Jun. 2021, pp. 3565–3569.  
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at Unconditionally must evaluate your data sources carefully to separate the wheat from the chaff: only 
including the good stuff. There are many different categories of data sources, which imply different 
considerations in assessing their quality. 

4.2.1 Purposefully Collected Data 
You may think that most data used in creating machine learning systems is expressly and carefully 
collected for the purpose of the problem, but you would be blissfully wrong. In fact, most data used in 
machine learning systems is repurposed. Some of the exceptions include data collected through surveys 
and censuses. These sources have the veneer of being well-designed and with minimal bias, but this 
might not always be the case. For example, if you rely on the recently completed national census in 
Kenya for either features or labels in Unconditionally’s poverty prediction problem, you may suffer from 
non-responses and malicious data manipulation.  

Another kind of purposefully collected data is generated from scientific experiments. Again, well-
designed and well-conducted experiments should yield reliable data. However, there is a prevalent lack 
of trust in the scientific method due to practices such as misuse of data analysis to find patterns in data 
that can be selectively presented as statistically significant (p-hacking and the file drawer problem), lack 
of reproducibility, and outright fraud. 

4.2.2 Administrative Data 
Administrative data is the data collected by organizations about their routine operations for non-
statistical reasons. Among Unconditionally’s list of possible datasets, call detail records and mobile 
money transactions fit the bill. Data scientists and engineers frequently repurpose administrative data 
to train models because it is there and they can. Sometimes, it even makes sense to do so.  

Since administrative data is a record of operations, which might have a direct bearing on an 
organization’s bottom line or be subject to audit, it is usually quite correct. There are often difficulties in 
attempting to integrate different sources of administrative data within an organization due to their being 
siloed across teams. Such data can also contain traces of historical prejudices as well.  

The most important thing for you to be aware of with administrative data is that it might not exactly 
match the predictive problem you are trying to solve. The machine learning problem specification may 
ask for a certain label, but the administrative data may contain columns that can only be proxies for that 
desired label. This mismatch can be devastating for certain individuals and groups, even if it is a decent 
proxy on average. For example, recall that in Chapter 2, we discussed how the number of doctor visits 
might not be a good proxy for how sick a patient is if there are external factors that prevent some groups 
from accessing health care. Also, the granularity of the records might be different than what is needed 
in the problem, e.g. individual phone numbers in call detail records instead of all activity by a household. 

4.2.3 Social Data 
Social data is data about people or created by people, and includes user-generated content, relationships 
between people, and traces of behavior.4 Postings of text and images on social media platforms are a 
perfect example. Friendship networks and search histories are other examples. Similar to 

 

 
4Alexandra Olteanu, Carlos Castillo, Fernando Diaz, and Emre Kıcıman. “Social Data: Biases, Methodological Pitfalls, and Ethi-
cal Boundaries.” In: Frontiers in Big Data 2.13 (Jul. 2019). 



Data Sources and Biases | 45 

administrative data, these sources are not produced for the problem specification, but are repurposed 
for predictive or causal modeling. Many a time, just like administrative data, social data is only a proxy 
for what the problem specification requires and can be misleading or even outright wrong. The social 
media content of potential recipients of Unconditionally’s cash transfer you analyze may be like this. 

Since social data is created for purposes like communicating, seeking jobs, and maintaining 
friendships, the quality, accuracy, and reliability of this data source may be much less than 
administrative data. Text may include various slang, non-standard dialects, misspellings, and biases. 
Other modalities of social data are riddled with vagaries of their own. The information content of 
individual data points might not be very high. Also, there can be large amounts of sampling biases 
because not all populations participate in social platforms to the same extent. In particular, 
marginalized populations may be invisible in some types of social data. 

4.2.4 Crowdsourcing  
Supervised learning requires both features and labels. Unlabeled data is much easier to acquire than 
labeled data. Crowdsourcing is a way to fill the gap: crowd workers label the sentiment of sentences, 
determine whether a piece of text is hate speech, draw boxes around objects in images, and so on.5 They 
evaluate explanations and the trustworthiness of machine learning systems. They help researchers 
better understand human behavior and human-computer interaction. Unconditionally contracted with 
crowd workers to label the type of roof of homes in satellite images. 

In many crowdsourcing platforms, the workers are low-skill individuals whose incentive is 
monetary. They sometimes communicate with each other outside of the crowdsourcing platform and 
behave in ways that attempt to game the system to their benefit. The wages of crowd workers may be 
low, which raises ethical concerns. They may be unfamiliar with the task or the social context of the task, 
which may yield biases in labels. For example, crowd workers may not have the context to know what 
constitutes a household in rural East Africa and may thus introduce biases in roof labeling. (More details 
on this example later.) Gaming the system may also yield biases. Despite some platforms having quality 
control mechanisms, if you design the labeling task poorly, you will obtain poor quality data. In some 
cases, especially those involving applications with a positive social impact, the crowdworkers may have 
higher skill and be intrinsically motivated to do a conscientious job. Nevertheless, they may still be 
unfamiliar with the social context or have other biases. 

4.2.5 Data Augmentation 
Sometimes, especially in specialized problem domains, the amount of available data is not sufficient to 
learn high-performing models. Data augmentation—performing various transformations of the given 
dataset—may be used to increase data set size without actually collecting additional data. In image data, 
transformations for augmentation include rotations, flips, shifts, warps, additions of noise, and so on. In 
natural language data, transformations can include replacing words with synonyms. These sorts of 
heuristic transformations introduce some level of your subjectivity, which may yield certain biases. 

 

 
5Jennifer Wortman Vaughan. “Making Better Use of the Crowd: How Crowdsourcing Can Advance Machine Learning Re-
search.” In: Journal of Machine Learning Research 18.193 (May 2018). 
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Another way to perform data augmentation is through generative machine learning: using the given 
data to train a data generator that outputs many more samples to then be used for training a classifier. 
Ideally, these generated data points should be as diverse as the given dataset. However, a big problem 
known as mode collapse, which produces samples from only one part of the probability distribution of the 
given data, can yield severe biases in the resulting dataset. 

4.2.6 Conclusion 
Different data sources are useful in addressing various problem specifications, but all have biases of one 
kind or the other. Most data sources are repurposed. You must take care when selecting among data 
sources by paying attention to the more prevalent biases for any given data source. The next section 
describes biases from the perspective of their different kinds and where in the lifecycle they manifest.  

 

4.3 Kinds of Biases 
Your team is chugging along in the data understanding phase of the machine learning lifecycle. You 
know how different data modalities and data sources can go awry. These issues are your focus while 
appraising data for biases and lack of validity as it passes through various spaces in the machine learning 
lifecycle. A model of biases, validity, and spaces for you to keep in mind is given in Figure 4.3. 

 
Figure 4.3. A mental model of spaces, validities, and biases. Accessible caption. A sequence of four spaces, 
each represented as a cloud. The construct space leads to the observed space via the measurement 
process. The observed space leads to the raw data space via the sampling process. The raw data space 
leads to the prepared data space via the data preparation process. The measurement process contains 
social bias, which threatens construct validity. The sampling process contains representation bias and 
temporal bias, which threatens external validity. The data preparation process contains data prepara-
tion bias and data poisoning, which threaten internal validity.  
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There are three main kinds of validity: (1) construct validity, (2) external validity, and (3) internal 
validity.6 Construct validity is whether the data really measures what it ought to measure. External 
validity is whether analyzing data from a given population generalizes to other populations. Internal 
validity is whether there are any errors in the data processing. 

The various kinds of validity are threatened by various kinds of bias. There are many categorizations 
of types of bias, but for simplicity, let’s focus on just five.7 Social bias threatens construct validity, 
representation bias and temporal bias threaten external validity, and data preparation bias and data poisoning 
threaten internal validity. These biases are detailed throughout this section. 

It is useful to also imagine different spaces in which various abstract and concrete versions of the 
data exist: a construct space, an observed space, a raw data space, and a prepared data space. The construct 
space is an abstract, unobserved, theoretical space in which there are no biases. Hakuna matata, the East 
African problem-free philosophy, reigns in this ideal world. The construct space is operationalized to 
the observed space through the measurement of features and labels.8 Data samples collected from a 
specific population in the observed space live in the raw data space. The raw data is processed to obtain 
the final prepared data to train and test machine learning models. 

4.3.1 Social Bias 
Whether it is experts whose decision making is being automated or it is crowd workers, people’s 
judgement is involved in going from labels in the construct space to labels in the observed space. These 
human judgements are subject to human cognitive biases which can lead to implicit social biases 
(associating stereotypes towards categories of people without conscious awareness) that yield 
systematic disadvantages to unprivileged individuals and groups.9 If decision makers are prejudiced, 
they may also exert explicit social bias. These biases are pernicious and reinforce deep-seated structural 
inequalities. Human cognitive biases in labeling can yield other sorts of systematic errors as well. 

There can also be structural inequalities in features too. If an aptitude test asks questions that rely 
on specific cultural knowledge that not all test-takers have, then the feature will not, in fact, be a good 
representation of the test-taker’s underlying aptitude. And most of the time, this tacit knowledge will 
favor privileged groups. Historical underinvestment and lack of opportunity among marginalized social 
groups also yield similar bias in features. 

Your team found an interesting case of social bias when appraising your crowdsourced labels of roofs 
seen in satellite images in East African villages. The crowd workers had marked and labeled not only the 
roof of the main house of a household compound, but also separate structures of the same household 
such as a free-standing kitchen and free-standing sleeping quarters for young men. They had no idea 
that this is how households are laid out in this part of the world. The bias, if not caught, would have led 
to incorrect inferences of poverty. 

 

 
6Alexandra Olteanu, Carlos Castillo, Fernando Diaz, and Emre Kıcıman. “Social Data: Biases, Methodological Pitfalls, and Ethi-
cal Boundaries.” In: Frontiers in Big Data 2.13 (Jul. 2019).  
7Harini Suresh and John Guttag. “A Framework for Understanding Sources of Harm Throughout the Machine Learning Life 
Cycle.” In: Proceedings of the ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Oct. 2021, p. 17.   
8Abigail Z. Jacobs and Hanna Wallach. “Measurement and Fairness.” In: Proceedings of the ACM Conference on Fairness, Accounta-
bility, and Transparency. Mar. 2021, pp. 375–385.  
9Lav R. Varshney and Kush R. Varshney. “Decision Making with Quantized Priors Leads to Discrimination.” In: Proceedings of the 
IEEE 105.2 (Feb. 2017), pp. 241–255.  
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4.3.2 Representation Bias 
Once operating in the observation space of features and labels, the data engineers on your team must 
actually acquire sample data points. Ideally, this sampling should be done in such a way that the 
acquired data set is representative of the underlying population. Often however, there is selection bias 
such that the probability distribution in the observed space does not match the distribution of the data 
points. External validity may be affected. A specific example of selection bias is unprivileged groups 
being either underrepresented or overrepresented in the dataset, which leads to machine learning 
models either ignoring their special characteristics to satisfy an average performance metric or focusing 
too much on them leading to systematic disadvantage. Upon appraisal of one of Unconditionally’s 
mobile phone datasets, the data engineers found that senior citizens were underrepresented because 
mobile phone ownership was lower in that subpopulation. They also found that the national census may 
have been undercounting people in some counties because the statistics authority had not provisioned 
enough census takers there. 

Representation bias need not only be selection bias. Even if present, the characteristics of the 
features and labels that come from one subpopulation may be different than those from another. 
Representativeness is not only a question of the presence and absence of data points, but is a broader 
concept that includes, among others, systematic differences in data quality. 

4.3.3 Temporal Bias 
Temporal bias is another bias that happens when the observation space is sampled to collect the raw 
data. It also puts external validity at stake. Once a dataset has been collected, it can get out of sync with 
the distribution in the observation space if the observation space drifts and shifts over time. Covariate 
shift refers to the distribution of the features, prior probability shift refers to the distribution of the labels, 
and concept drift refers to the conditional distribution of the labels given the features. These drifts and 
shifts can be gradual or sudden. (Distribution shift is covered in greater detail in Chapter 9.) An example 
of covariate shift in Unconditionally’s satellite image dataset is that some locations were observed in the 
rainy season and some were observed in the dry season.  

4.3.4 Data Preparation Bias 
The data preparation phase follows the data understanding phase in the machine learning lifecycle. 
Many biases can be introduced in data preparation that limit internal validity. For example, the data 
engineers on your team must do something to rows containing missing values. If they follow the 
common practice of dropping these rows and the missingness is correlated with a sensitive feature, like 
a debt feature being missing more often for certain religious groups, they have introduced a new bias. 
Other biases can enter in data preparation through other data cleaning, data enrichment, and data 
aggregation steps, as well as in data augmentation (see Section 4.2.5).  

A sometimes overlooked bias is the use of proxies in the labels. For example, arrests are a 
problematic proxy for committing crimes. Innocent people are sometimes arrested and more arrests 
happen where there is more police presence (and police are deployed unevenly). Health care utilization 
is a problematic proxy for an individual’s health status because groups utilize health care systems 
unevenly. Data preparation biases are often subtle and involve some choices made by the data engineer 
and data scientist, who are influenced by their own personal and social biases. You can help mitigate 
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some of these social biases by taking input from a diverse panel of informants in the data understanding 
phase of the lifecycle. (The role of a diverse team in data understanding is covered in greater depth in 
Chapter 16.) 

4.3.5 Data Poisoning 
Finally, a malicious actor can introduce unwanted biases into a dataset, unbeknown to you. This kind of 
adversarial attack is known as data poisoning. Data poisoning is accomplished through different means, 
including data injection and data manipulation. Data injection is adding additional data points with 
characteristics desired by the adversary. Data manipulation is altering the data points already in the 
dataset. (Data poisoning is covered in more detail in Chapter 11.) 

Most of the biases introduced in this chapter can be implemented deliberately to reduce the 
performance of a machine learning system or otherwise degrade it. Security analysts commonly focus 
on attacks on accuracy, but other considerations like fairness can also be attacked. In addition to 
degrading performance, data poisoning can introduce a so-called backdoor for the adversary to exploit 
later. For example, someone trying to swindle Unconditionally might introduce satellite images of 
households next to rivers always labeled as severe poverty to trick your model into giving more cash 
transfers to riverside communities. 

4.3.6 Conclusion 
The different categories of bias neutralize different types of validity. Appraising data and preparing data 
are difficult tasks that must be done comprehensively without taking shortcuts. More diverse teams may 
be able to brainstorm more threats to validity than less diverse teams. Assessing data requires a careful 
consideration not only of the modality and source, but also of the measurement, sampling, and 
preparation. The mental model of biases provides you with a checklist to go through before using a 
dataset to train a machine learning model. Have you evaluated social biases? Is your dataset 
representative? Could there be any temporal dataset shifts over time? Have any data preparation steps 
accidently introduced any subtle biases? Has someone snuck in, accessed the data, and changed it for 
their malicious purpose? 

What should you do if any bias is found? Some biases can be overcome by collecting better data or 
redoing preparation steps better. Some biases will slip through and contribute to epistemic uncertainty 
in the modeling phase of the machine learning lifecycle. Some of the biases that have slipped through 
can be mitigated in the modeling step explicitly through defense algorithms or implicitly by being robust 
to them. You’ll learn how in Part 4 of the book. 

 

4.4 Summary 
▪ Data is the prerequisite for modeling in machine learning systems. It comes in many forms from 

various sources and can pick up many different biases along the way. 

▪ It is critical to ascertain which biases are present in a dataset because they jeopardize the validity 
of the system solving the specified problem. 

▪ Evaluating structured datasets involves evaluating the dataset itself, including a focus on data 
preparation. Evaluating semi-structured datasets that are represented by foundation models and 
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learned representations additionally involves evaluating large-scale background datasets. 

▪ The source of most data for machine learning is repurposed data created and collected for other 
reasons. Evaluating the original reason for data creation provides insight into a dataset’s bias. 

▪ No matter how careful one is, there is no completely unbiased dataset. Nevertheless, the more 
effort put in to catching and fixing biases before modeling, the better. 

▪ Trustworthy machine learning systems should be designed to mitigate biases that slip through 
the data understanding and data preparation phases of the lifecycle. 
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5  
Privacy and Consent 

A global virus pandemic is starting to abate, and different organizations are scrambling to put together 
‘back-to-work’ plans to allow employees to return to their workplace after several months in lockdown 
at home. Toward this end, organizations are evaluating a (fictional) machine learning-based mobile app 
named TraceBridge. It supports the return to the office by collecting and modeling location traces, 
health-related measurements, other social data (e.g. internal social media and calendar invitations 
among employees), and administrative data (e.g. space planning information and org charts), to 
facilitate digital contact tracing: the process of figuring out disease-spreading interactions between an 
infected person and others. Is TraceBridge the right solution? Will organizations be able to re-open 
safely or will the employees be homebound for even more seemingly unending months? 

The data that TraceBridge collects, even if free from many biases investigated in Chapter 5, is not 
free from concern. Does TraceBridge store the data from all employees in a centralized database? Who 
has access to the data? What would be revealed if there were a data breach? Have the employees been 
informed about possible uses of the data and agreed to them? Does the organization have permission to 
share their data with other organizations? Can employees opt out of the app or would that jeopardize 
their livelihood? Who gets to know that an employee has tested positive for the disease? Who gets to 
know their identity and their contacts? 

The guidance to data scientists in Chapter 4 was to be wary of biases that creep into data and problem 
formulations because of the harms they can cause. In this chapter, the thing to be wary about is whether 
it is even right to use certain data for reasons of consent, power, and privacy.1 Employers are now 
evaluating the app. However, when the problem owners, developers, and data scientists of TraceBridge 
were creating the app, they had to:  

▪ weigh the need for consent, diffusion of power, and privacy, 

 

 
1Eun Seo Jo and Timnit Gebru. “Lessons from Archives: Strategies for Collecting Sociocultural Data in Machine Learning.” In: 
Proceedings of the ACM Conference on Fairness, Accountability, and Transparency. Barcelona, Spain, Jan. 2020, pp. 306–316.  
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▪ differentiate different kinds of anonymity for privacy, and 

▪ question whether anonymity is the only way to achieve privacy. 

Let’s critique their choices. 
 

5.1 Consent, Power, and Privacy 
The design of TraceBridge utilizes purposefully collected data, social data, and administrative data 
because using all of these data sources as features increases the performance of the underlying machine 
learning models. The app does not inform employees that it accesses internal social media, calendar 
invitations, and administrative data. In the app design, the employer’s organizational leadership has full 
control over the data.  

As the designers, the TraceBridge team thought they were taking a simple and effective approach, 
but they did not understand that they were introducing problems of consent and power. The employer 
holds all the power in the deployment of the app because it can require the usage of the app as a 
condition of employment without any opportunity for the employee to give consent. Employees also 
have no opportunity to provide informed consent to the use of specific parts of their data. The employer 
holds the power to use the data not only for contact tracing of the viral infection, but also to track worker 
movements and interactions for other reasons like noting too many breaks and unwanted gatherings. 
Nothing prevents them from selling the data to other interested parties, leaving the employees 
powerless over their data. Overall, the design favors the powerful employer and fails the vulnerable 
employees. 

Furthermore, the TraceBridge system design stores all personally-identifiable data it uses centrally 
without encryption or other safeguards for security, and makes it available without obfuscation to the 
organization’s management as the default behavior. When an infection is detected, an alert goes out to 
all people in the organization. Details of the identity of the infected person are transmitted to 
management and all inferred contacts.  

The TraceBridge team may think they are providing a turnkey solution that does not overcomplicate 
things on the backend, but their design choices sacrifice privacy, the ability of individuals to withhold 
information about themselves. Privacy is considered an essential human right in many value systems 
and legal frameworks. The central repository of personally-identifiable information provides no 
protections to maintain anonymity in the employee’s data. The health status and movement of 
employees throughout the day is completely obvious by name. Furthermore, by revealing identifying 
information through alerts, there is no maintenance of anonymity. The TraceBridge team has been quite 
negligent of privacy considerations and any organization using the app will likely be on the wrong side 
of the law.  

In a broad sense, data is a valuable commodity. It reveals a lot about human behavior at a gross level, 
but also about the behavior of individual people. Just like other natural resources, it can be extracted 
from the vulnerable without their consent and furthermore be exploited for their subjugation.2 Some 

 

 
2Shakir Mohamed, Marie-Therese Png, and William Isaac. “Decolonial AI: Decolonial Theory as Sociotechnical Foresight in 
Artificial Intelligence.” In: Philosophy and Technology 33 (Jul. 2020), pp. 659–684.  
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even argue that people should be compensated for their personal data because they are selling their 
privacy.3 In short, data is power. 

“Data is the new oil.” 

—Clive Humby, data science entrepreneur at dunnhumby 

Data used in machine learning is often fraught with power and consent issues because it is often 
repurposed from other uses or is so-called data exhaust: byproducts from people’s digital activities. For 
example, many large-scale image datasets used for training computer vision models are scraped from 
the internet without explicit consent from the people who posted the images.4 Although there may be 
implicit consent through vehicles such as Creative Commons licenses, a lack of explicit consent can 
nevertheless be problematic. Sometimes copyright laws are violated in scraped and repurposed data.  

Why does this happen? It is almost always due to system designers taking shortcuts to gather large 
datasets and show value quickly without giving thought to power and consent. And it is precisely the 
most powerful who tend to be least cognizant of issues of power. People from marginalized, minoritized, 
and otherwise less powerful backgrounds tend to have more knowledge of the perspectives of both the 
powerful and the powerless.5 This concept, known as the epistemic advantage of people with lived 
experience of marginalization, is covered in greater detail in Chapter 16. Similarly, except in regulated 
application domains such as health care, privacy issues have usually been an afterthought due to 
convenience. Things have started to change due to comprehensive laws such as the General Data 
Protection Regulation enacted in the European Economic Area in 2018. 

In summary, problem owners and data scientists should not have any calculus to weigh issues of 
power, consent and privacy against conveniences in data collection. For the fourth attribute of trust 
(aligned purpose), trustworthy machine learning systems require that data be used consensually, 
especially from those who could be subject to exploitation. No ifs, ands, or buts! 

 

5.2 Achieving Privacy through Anonymization 
After receiving unfavorable feedback from organizations that they risk breaking privacy laws, the 
TraceBridge development team is back to the drawing board. They must figure out what the heck privacy 
is all about, pick among competing frameworks, and then incorporate them into their system. 

In preserving privacy, there are two main use cases: (1) data publishing and (2) data mining. Privacy-
preserving data publishing is anonymizing data to fully disclose it without violating privacy. Privacy-
preserving data mining is querying data while controlling the disclosure of information at the individual 
level. Privacy-preserving data publishing is also known as non-interactive anonymization and privacy-

 

 
3Nicholas Vincent, Yichun Li, Renee Zha, and Brent Hecht. “Mapping the Potential and Pitfalls of ‘Data Dividends’ as a Means of 
Sharing the Profits of Artificial Intelligence.” arXiv:1912.00757, 2019.  
4Abeba Birhane and Vinay Uday Prabhu. “Large Image Datasets: A Pyrrhic Win for Computer Vision?” In: Proceedings of the IEEE 
Winter Conference on Applications of Computer Vision. Jan. 2021, pp. 1536–1546. 
5Miliann Kang, Donovan Lessard, and Laura Heston. Introduction to Women, Gender, Sexuality Studies. Amherst, Massachusetts, 
USA: University of Massachusetts Amherst Libraries, 2017.  
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preserving data mining is also known as interactive anonymization. TraceBridge may want to do either or 
both: publishing datasets for examination by organizational leaders or state regulators, and issuing 
contact tracing alerts without exposing individually-identifiable data. They have to go down both paths 
and learn about the appropriate technical approaches in each case: syntactic anonymity for data 
publishing and differential privacy for data mining.6 

There are three main categories of variables when dealing with privacy: (1) identifiers, (2) quasi-
identifiers, and (3) sensitive attributes. Identifiers directly reveal the identity of a person. Examples 
include the name of the person, national identification numbers such as the social security number, or 
employee serial numbers. Identifiers should be dropped from a dataset to achieve privacy, but such 
dropping is not the entire solution. In contrast, quasi-identifiers do not uniquely identify people on their 
own, but can reveal identity when linked together through a process known as re-identification. Examples 
are gender, birth date, postal code, and group membership. Sensitive attributes are features that people 
do not want revealed. Examples are health status, voting record, salary, and movement information. 
Briefly, syntactic anonymity works by modifying quasi-identifiers to reduce their information content, 
including suppressing them, generalizing them, and shuffling them. Differential privacy works by 
adding noise to sensitive attributes. A mental model for the two modes of privacy is given in Figure 5.1. 

To make this mental model more concrete, let’s see how it applies to an actual sample dataset of 
employees and their results on a diagnostic test for the virus (specifically the cycle threshold (CT) value 
of a polymerase chain reaction test), which we treat as sensitive. The original dataset, the transformed 
dataset after k-anonymity with 𝑘 =  3, and the transformed dataset after differential privacy are shown 
in Table 5.1, Table 5.2, and Table 5.3 (details on k-anonymity and differential privacy are forthcoming). 

Table 5.1. A sample original dataset. 

Name Department CT Value 
Joseph Cipolla Trustworthy AI 12 
Kweku Yefi Neurosymbolic AI 20 
Anjali Singh AI Applications 35 
Celia Sontag Compute Acceleration 31 
Phaedra Paragios Software-Defined Architecture 19 
Chunhua Chen Thermal Packaging 27 

Table 5.2. The sample original dataset under k-anonymity with 𝑘 = 3. 

Organization CT Value 
AI 12 
AI 20 
AI 35 
Hybrid Cloud 31 
Hybrid Cloud 19 
Hybrid Cloud 27 

 

 
6John S. Davis II and Osonde A. Osoba. “Privacy Preservation in the Age of Big Data: A Survey.” RAND Justice, Infrastructure, and 
Environment Working Paper WR-1161, 2016. 
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Table 5.3. The values returned for queries under differential privacy with Laplace noise added to the sensitive at-
tribute in the  sample original dataset. 

Name Department CT Value 
Joseph Cipolla Trustworthy AI 13.5 
Kweku Yefi Neurosymbolic AI 12.8 
Anjali Singh AI Applications 32.7 
Celia Sontag Compute Acceleration 35.9 
Phaedra Paragios Software-Defined Architecture 22.1 
Chunhua Chen Thermal Packaging 13.4 

 
Figure 5.1. A mental model of privacy-preservation broken down into two branches: data publishing with syntac-
tic anonymity and data mining with differential privacy. Accessible caption. A hierarchy diagram with pri-
vacy-preservation at its root. One child is data publishing, which is done when you release dataset. The 
only child of data publishing is syntactic anonymity. Syntactic anonymity is illustrated by a table with 
columns for quasi-identifiers and sensitive attributes. By suppressing, generalizing, or shuffling quasi-
identifiers, some rows have been reordered and others have taken on a different value. The other child 
of privacy-preservation is data mining, which is done when you query dataset in a controlled manner. 
The only child of data mining is differential privacy. Differential privacy is also illustrated by a table 
with columns for quasi-identifiers and sensitive attributes. By adding noise to sensitive attributes, all 
the rows are noisy. 
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5.2.1 Data Publishing and Syntactic Anonymity 
The simplest form of syntactic anonymity is k-anonymity.7 By means of suppressing values of quasi-
identifiers (replacing the value with a null value) or generalizing their values (for example replacing 5-
digit zip codes with only their first three digits), the idea of k-anonymity is to create groups of records of 
cardinality at least 𝑘 that have exactly the same modified quasi-identifier values. All the records within 
a group or cluster become equivalent and cannot be distinguished. Randomly shuffling identifiers 
within a quasi-identifier group achieves the same effect. If there are 𝑛 data points in the original dataset, 
then there should be about 𝑛/𝑘 groups in the anonymized dataset, each of approximately the same 
cardinality.  

Weaknesses of k-anonymity include susceptibility to the homogeneity attack and the background 
knowledge attack. The homogeneity attack takes advantage of many records within a k-member cluster 
having the same sensitive attributes, which means that even without precise re-identification, the 
sensitive information of individuals is still revealed. The background knowledge attack takes advantage 
of side information of subgroups having specific distributions of sensitive attributes to home in on likely 
sensitive attribute values of individuals. An extension of k-anonymity known as is l-diversity overcomes 
these vulnerabilities.8 It further requires each 𝑘-member group to have at least 𝑙 distinct values of 
sensitive attributes. 

A further enhancement of k-anonymity and l-diversity is t-closeness.9 Starting with the basic 
definition of k-anonymity, t-closeness further requires that the suitably-defined distance between the 
sensitive attribute probability distribution of each k-member group and the global sensitive attribute 
probability distribution of all records in the dataset is less than or equal to 𝑡. Simply put, all the groups 
should be similar in their distribution of sensitive attributes. Finding a t-closeness transformation of a 
given dataset is computationally difficult.  

The re-identification risks of k-anonymity, l-diversity, and t-closeness have interpretations in terms 
of mutual information, which was introduced in Chapter 3. If 𝑋 is the random variable for quasi-
identifiers in the original dataset, 𝑋̃ is the random variable for quasi-identifiers in the anonymized 
dataset, and 𝑊 is the random variable for sensitive attributes, then we have the following quantitative 
problem specifications: 

▪ 𝐼(𝑋, 𝑋̃) ≤ 𝑙𝑜𝑔 𝑛
𝑘 (k-anonymity),  

▪ 𝐼(𝑊, 𝑋̃) ≤ 𝐻(𝑊) − 𝑙𝑜𝑔 𝑙 (l-diversity), and  

▪ 𝐼(𝑊, 𝑋̃) ≤ 𝑡 (t-closeness).10  

Through k-anonymity, the reidentification risk is reduced down from that of the full dataset to the 
number of clusters. With l-diversity or t-closeness added on top of k-anonymity, the predictability of the 

 

 
7Latanya Sweeney. “k-Anonymity: A Model for Protecting Privacy.” In: International Journal of Uncertainty, Fuzziness and 
Knowledge-Based Systems 10.5 (Oct. 2002), pp. 557–570.  
8Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan Venkitasubramaniam. “l-Diversity: Pri-
vacy Beyond k-Anonymity.” In: ACM Transactions on Knowledge Discovery from Data 1.1 (Mar. 2007), p. 3. 
9Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. “t-Closeness: Privacy Beyond k-Anonymity and l-Diversity.” In: 
Proceedings of the IEEE International Conference on Data Engineering. Istanbul, Turkey, Apr. 2007, pp. 106–115.   
10Michele Bezzi. “An Information Theoretic Approach for Privacy Metrics.” In: Transactions on Data Privacy 3.3 (Dec. 2010), pp. 
199–215.  
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sensitive attributes from the anonymized quasi-identifiers is constrained. These relationships are 
valuable ways of reasoning about what information is and is not revealed due to anonymization. By 
expressing them in the common statistical language of information theory, they can be examined and 
studied alongside other problem specifications and requirements of trustworthiness in broader 
contexts. 

5.2.2 Data Mining and Differential Privacy 
The other branch of anonymization is differential privacy and applies to use cases involving querying a 
dataset, not simply releasing it. The setup is that an organization has a dataset and knows exactly which 
query it will be dealing with. Some example queries are to return the count of a certain value in the 
dataset or the average value of a column in the dataset. A query could even be as complicated as 
returning a machine learning classifier trained on the dataset. Some queries are easier and some 
queries are harder to anonymize. In the differential privacy setup, the organization has to maintain 
control over the dataset and all queries to it. This is in contrast to syntactic anonymity where once the 
dataset has been anonymized, it is footloose and free. The basic method of differential privacy is adding 
noise to sensitive attributes. 

Getting down into a little more detail, let’s say that TraceBridge has a dataset 𝑊1 of all employees 
positive for the viral disease. Another employee is detected to be positive and is added to the dataset 
giving us a new dataset 𝑊2 that only differs from 𝑊1 by the addition of one row. Let’s say that the query 
function 𝑦(𝑊) is the number of employees who have cancer, which is important for better understanding 
the relationship between cancer and the viral disease.11 Cancer diagnosis status is considered sensitive. 
Instead of actually returning 𝑦(𝑊), a differentially-private system gives back a noisy version of 𝑦(𝑊) by 
adding a random value to it. The value it returns is 𝑌̃(𝑊) = 𝑦(𝑊) + noise. 𝑌̃ is a random function which 
we can think of as a random variable that takes sample value 𝑦̃. The goal of differential privacy is 
expressed by the following bound involving the probabilities of queries from the original and new 
datasets: 

𝑃(𝑌̃(𝑊1) = 𝑦̃) ≤ 𝑒𝜖𝑃(𝑌̃(𝑊2) = 𝑦̃), for all 𝑦̃.  

Equation 5.1 

The 𝜖 is a tiny positive parameter saying how much privacy we want. The value of 𝑒𝜖  becomes closer and 
closer to one as 𝜖 gets closer and closer to zero. When 𝜖 is zero, the two probabilities are required to be 
equal and thus the two datasets have to be indistinguishable, which is exactly the sense of anonymity 
that differential-privacy is aiming for.12 You can’t tell the difference in the query result when you add the 
new person in, so you can’t figure out their sensitive attribute any more than what you could have figured 
out in general from the dataset. 

 

 
11https://rebootrx.org/covid-cancer  
12We should really write 𝑃(𝑌̃(𝑊1) ∈ 𝑆) ≤ 𝑒𝜖𝑃(𝑌̃(𝑊2) ∈ 𝑆) for some interval or other set 𝑆 because if 𝑌̃ is a continuous random 
variable, then its probability of taking any specific value is always zero. It only has a specific probability when defined over a 
set. 



58 | Trustworthy Machine Learning 

The main trick in differential privacy is solving for the kind of noise and its strength to add to 𝑦(𝑊). 
For lots of query functions, the best kind of noise comes from the Laplace distribution.13 As stated 
earlier, some queries are easier than others. This easiness is quantified using global sensitivity, which 
measures how much a single row of a dataset impacts the query value. Queries with smaller global 
sensitivity need lower strength noise to achieve 𝜖-differential privacy. 

Just like with syntactic privacy, it can be easier to think about differential privacy alongside other 
problem specifications in trustworthy machine learning like accuracy, fairness, robustness, and 
explainability when expressed in terms of information theory rather than the more specialized 
terminology used in defining it earlier. To do so, we also need to say that the dataset 𝑊 is a random 
variable, so the probabilities that we want to be close to each other are the noised query results 
conditioned on the dataset realizations 𝑃(𝑌̃ ∣ 𝑊 = 𝑤1) and 𝑃(𝑌̃ ∣ 𝑊 = 𝑤2). Then we can pose our objective 
of differential privacy as wanting the mutual information between the dataset and noisy query result 
𝐼(𝑊, 𝑌̃) to be minimized. With some more specifics added to minimizing the mutual information, we can 
get back a relationship in terms of the 𝜖 of 𝜖-differential privacy.14 The idea of examining the mutual 
information between the dataset and the query is as follows. Since mutual information measures the 
reduction in uncertainty about the dataset by the knowledge of the query, having zero (or small) mutual 
information indicates that we don’t learn anything about the dataset’s composition from the query 
result, which is exactly the idea of differential privacy. 

Differential privacy is intended to prevent attributing the change of the query’s value to any one 
person’s row of data. Nevertheless, one criticism of differential privacy as imagined in its information 
theory presentation is that it can allow the value of sensitive attributes to be inferred if there are 
correlations or associations among the rows. Stricter information-theoretic conceptions of differential 
privacy have been developed that require the rows of the dataset to be independent.  

5.2.3 Conclusion 
TraceBridge has a few different use cases as part of their app and contact tracing system. One is 
publishing sensitive data for the leaders of the organization, external regulators, or auditors to look at. 
A second is to interactively query statistics from the sensitive data without revealing things about 
individuals. Each use has different appropriate approaches: syntactic anonymity for the first and 
differential privacy for the second, along with different requirements on the system design and the 
infrastructure required. Existing legal protections in various jurisdictions and application domains are 
mostly for the first use case (data publishing), but the regulations themselves are usually unclear on 
their precise notion of privacy. TraceBridge may have to go with both approaches to privacy in 
developing a trusted system. 

We’ve reached the end of this section and haven’t talked about the tradeoff of privacy with utility. All 
measures and approaches of providing privacy should be evaluated in conjunction with how the data is 
going to be used. It is a balance. The tradeoff parameters are there for a reason. The usefulness of a 
dataset after k-anonymization is usually pretty good for a decent-sized 𝑘, but might not be so great after 

 

 
13The pdf of the Laplace distribution is 𝑝𝑋(𝑥) =

1

2𝑏
exp (−

|𝑥−𝜇|

𝑏
), where 𝜇 is the mean and 𝑏 is a scale parameter such that the var-

iance is 2𝑏2.  
14Darakshan J. Mir. “Information-Theoretic Foundations of Differential Privacy.” In: Foundations and Practice of Security. Mon-
treal, Canada, Oct. 2012, pp. 374–381.   
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achieving t-closeness for a decent 𝑡. Similarly, a criticism of differential privacy for typical queries is 
that the usefulness of the query results is not that great for a small 𝜖 (adding a large magnitude of noise). 
However, there are no blanket statements to be made: these intuitions have to be appraised for specific 
scenarios and datasets, and privacy parameters have to be chosen carefully without taking shortcuts 
and incorporating input from multiple stakeholders. 

 

5.3 Other Ways of Achieving Privacy 
The two technical approaches that yield anonymized data (syntactic anonymity for data publishing and 
differential privacy for data mining) are not the only ways for TraceBridge to achieve privacy. Here’s a 
really easy way for them to achieve privacy: lock up the data and throw away the key. If they don’t publish 
the data and provide no ability to query it, they have perfect privacy. But they don’t have any utility from 
the data either. So what else can they do? 

One answer is to set up institutional controls and procedures so that only qualified individuals have 
access to data, and only for specific approved uses. Cleared data scientists may only be allowed to access 
the data on closed computing systems with strong enforcement to prevent data breaches. Keeping data 
in a decentralized manner rather than all in one centralized place can also help prevent breaches. 

A second answer is to bring the algorithm to the data rather than the other way around. Working 
through a decentralized system where different pieces of data are kept in different places, secure multi-
party computation allows a value to be computed using data from different sources without revealing the 
inputs sent by each data source to other data sources.  

A third answer is encryption. TraceBridge can use fully homomorphic encryption to compute things on 
encrypted data and get the answer they would have gotten if the data hadn’t been encrypted. This 
approach can be a computational beast, but is getting more and more computationally tractable every 
day. 

With all three of these approaches: institutional controls, secure multi-party computation, and fully 
homomorphic encryption, the question of what is computed remains open. People and organizations 
can be using these techniques and still be outputting some value or summary statistic that discloses 
sensitive individual information. It may thus make sense to combine these methods with, for example, 
differential privacy. 

 

5.4 Summary 
▪ Data is a valuable resource that comes from people. The use of this data should be consensually 

obtained. If there is no consent, do not proceed. 

▪ It is easy for data scientists to set up machine learning systems that exploit and subjugate 
vulnerable individuals and groups. Do not do it. Instead, be careful, thoughtful, and take input 
from powerless groups. 

▪ By consenting to the use of their data, people give up their privacy. Various methods can be used 
to preserve their privacy. 

▪ Syntactic anonymization methods group together individuals with similar quasi-identifiers and 
then obfuscate those quasi-identifiers. These methods are useful when publishing individual-
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level data. 

▪ Differential privacy methods add noise to queries about sensitive attributes when users can only 
interact with the data through known and fixed queries. These methods are useful when 
statistically analyzing the data or computing models from the data. 

▪ Securing access to data provides an alternative to data anonymization. 
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6  
Detection Theory 

Let’s continue from Chapter 3, where you are the data scientist building the loan approval model for the 
(fictional) peer-to-peer lender ThriveGuild. As then, you are in the first stage of the machine learning 
lifecycle, working with the problem owner to specify the goals and indicators of the system. You have 
already clarified that safety is important, and that it is composed of two parts: basic performance 
(minimizing aleatoric uncertainty) and reliability (minimizing epistemic uncertainty). Now you want to 
go into greater depth in the problem specification for the first part: basic performance. (Reliability 
comes in Part 4 of the book.) 

What are the different quantitative metrics you could use in translating the problem-specific goals 
(e.g. expected profit for the peer-to-peer lender) to machine learning quantities? Once you’ve reached 
the modeling stage of the lifecycle, how would you know you have a good model? Do you have any special 
considerations when producing a model for risk assessment rather than simply offering an 
approve/deny output? 

Machine learning models are decision functions: based on the borrower’s features, they decide a 
response that may lead to an autonomous approval/denial action or be used to support the decision 
making of the loan officer. The use of decision functions is known as statistical discrimination because 
we are distinguishing or differentiating one class label from the other. You should contrast the use of the 
term ‘discrimination’ here with unwanted discrimination that leads to systematic advantages to certain 
groups in the context of algorithmic fairness in Chapter 10. Discrimination here is simply telling the 
difference between things. Your favorite wine snob talking about their discriminative palate is a distinct 
concept from racial discrimination. 

This chapter begins Part 3 of the book on basic modeling (see Figure 6.1 to remind yourself of the lay 
of the land) and uses detection theory, the study of optimal decision making in the case of categorical 
output responses,1 to answer the questions above that you are struggling with.  

 

 
1Estimation theory is the study of optimal decision making in the case of continuous output responses. 
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Figure 6.1. Organization of the book. This third part focuses on the first attribute of trustworthiness, competence 
and credibility, which maps to machine learning models that are well-performing and accurate. Accessible cap-
tion. A flow diagram from left to right with six boxes: part 1: introduction and preliminaries; part 2: 
data; part 3: basic modeling; part 4: reliability; part 5: interaction; part 6: purpose. Part 3 is high-
lighted. Parts 3–4 are labeled as attributes of safety. Parts 3–6 are labeled as attributes of trustworthi-
ness. 

Specifically, this chapter focuses on: 

▪ selecting metrics to quantify the basic performance of your decision function (including ones 
that summarize performance across operating conditions), 

▪ testing whether your decision function is as good as it could ever be, and 

▪ differentiating performance in risk assessment problems from performance in binary decision 
problems. 

 

6.1 Selecting Decision Function Metrics 
You, the ThriveGuild data scientist, are faced with the binary detection problem, also known as the binary 
hypothesis testing problem, of predicting which loan applicants will default, and thereby which 
applications to deny.2 Let 𝑌 be the loan approval decision with label 𝑦 = 0 corresponding to deny and 
label 𝑦 = 1 corresponding to approve. Feature vector 𝑋 contains employment status, income, and other 
attributes. The value 𝑦 = 0 is called a negative and the value 𝑦 = 1 is called a positive. The random 
variables for the features and label are governed by the pmfs given the special name likelihood functions 
𝑝𝑋∣𝑌( 𝑥 ∣∣ 𝑦 = 0 ) and 𝑝𝑋∣𝑌( 𝑥 ∣∣ 𝑦 = 1 ), as well as by prior probabilities 𝑝0 = 𝑃(𝑌 = 0) and 𝑝1 = 𝑃(𝑌 = 1) = 1 −

𝑝0. The basic task is to find a decision function 𝑦̂: 𝒳 → {0,1} that predicts a label from the features.3  

6.1.1 Quantifying the Possible Events 
There are four possible events in the binary detection problem:  

1. the decision function predicts 0 and the true label is 0, 

2. the decision function predicts 0 and the true label is 1, 

 

 
2For ease of explanation in this chapter and in later parts of the book, we mostly stick with the case of two label values and do 
not delve much into the case with more than two label values.  
3This is also the basic task of supervised machine learning. In supervised learning, the decision function is based on data sam-
ples from (𝑋, 𝑌) rather than on the distributions; supervised learning is coming up soon enough in the next chapter, Chapter 7.  
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3. the decision function predicts 1 and the true label is 1, and 

4. the decision function predicts 1 and the true label is 0.  

These are known as true negatives (TN), false negatives (FN), true positives (TP), and false positives (FP), 
respectively. A true negative is denying an applicant who should be denied according to some ground 
truth, a false negative is denying an applicant who should be approved, a true positive is approving an 
applicant who should be approved, and a false positive is approving an applicant who should be denied. 
Let’s organize these events in a table known as the confusion matrix: 
 

 𝑌 =  1 𝑌 =  0 

𝑦̂(𝑋) = 1 TP FP 

𝑦̂(𝑋) = 0 FN TN 

Equation 6.1 

The probabilities of these events are: 
 

𝑝TP = 𝑃( 𝑦̂(𝑋) = 1 ∣∣ 𝑌 = 1 ) 𝑝FP = 𝑃( 𝑦̂(𝑋) = 1 ∣∣ 𝑌 = 0 ) 

𝑝FN = 𝑃( 𝑦̂(𝑋) = 0 ∣∣ 𝑌 = 1 ) 𝑝TN = 𝑃( 𝑦̂(𝑋) = 0 ∣∣ 𝑌 = 0 ) 

Equation 6.2 

These conditional probabilities are nothing more than a direct implementation of the definitions of the 
events. The probability 𝑝TN is known as the true negative rate as well as the specificity and the selectivity. 
The probability 𝑝FN is known as the false negative rate as well as the probability of missed detection and 
the miss rate. The probability 𝑝TP is known as the true positive rate as well as the probability of detection, 
the recall, the sensitivity, and the power. The probability 𝑝FP is known as the false positive rate as well as 
the probability of false alarm and the fall-out. The probabilities can be organized in a slightly different 
table as well: 
 

𝑃( 𝑦̂(𝑋) ∣∣ 𝑌 ) 𝑌 =  1 𝑌 =  0 

𝑦̂(𝑋) = 1 𝑝TP 𝑝FP 

𝑦̂(𝑋) = 0 𝑝FN 𝑝TN 

Equation 6.3 
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These probabilities give you some quantities by which to understand the performance of the decision 
function 𝑦̂. Selecting one over the other involves thinking about the events themselves and how they 
relate to the real-world problem. A false positive, approving an applicant who should be denied, means 
that a ThriveGuild lender has to bear the cost of a default, so it should be kept small. A false negative, 
denying an applicant who should be approved, is a lost opportunity for ThriveGuild to make a profit 
through the interest they charge. 

The events above are conditioned on the true label. Conditioning on the predicted label also yields 
events and probabilities of interest in characterizing performance: 
 

𝑃( 𝑌 ∣∣ 𝑦̂(𝑋) ) 𝑌 =  1 𝑌 =  0 

𝑦̂(𝑋) = 1 𝑝PPV 𝑝FDR 

𝑦̂(𝑋) = 0 𝑝FOR 𝑝NPV 

Equation 6.4 

These conditional probabilities are reversed from Equation 6.2. The probability 𝑝𝑁𝑃𝑉 is known as the 
negative predictive value. The probability 𝑝𝐹𝑂𝑅 is known as the false omission rate. The probability 𝑝𝑃𝑃𝑉 is 
known as the positive predictive value as well as the precision. The probability 𝑝𝐹𝐷𝑅 is known as the false 
discovery rate. If you care about the quality of the decision function, focus on the first set (𝑝TN, 𝑝FN, 𝑝TP, 
𝑝FP). If you care about the quality of the predictions, focus on the second set (𝑝NPV, 𝑝FOR, 𝑝PPV, 𝑝FDR). 

When you need to numerically compute these probabilities, apply the decision function to several 
i.i.d. samples of (𝑋, 𝑌) and denote the number of TN, FN, TP, and FP events as 𝑛TN, 𝑛FN, 𝑛TP, and 𝑛FP, 
respectively.  Then use the following estimates of the probabilities: 

 

𝑝TP ≈
𝑛TP

𝑛TP + 𝑛FN
 𝑝FP ≈

𝑛FP

𝑛FP + 𝑛TN
 

𝑝FN ≈
𝑛FN

𝑛FN + 𝑛TP
  𝑝TN ≈

𝑛TN

𝑛TN + 𝑛FP
 

 

𝑝PPV ≈
𝑛TP

𝑛TP + 𝑛FP
 𝑝FDR ≈

𝑛FP

𝑛FP + 𝑛TP
 

𝑝FOR ≈
𝑛FN

𝑛FN + 𝑛TN
 𝑝NPV ≈

𝑛TN

𝑛TN + 𝑛FN
 

Equation 6.5 

As an example, let’s say that ThriveGuild makes the following number of decisions: 𝑛TN = 1234, 𝑛FN =

73, 𝑛TP = 843, and 𝑛FP = 217. You can estimate the various performance probabilities by plugging these 
numbers into the respective expressions above. The results are 𝑝TN ≈ 0.85, 𝑝FN ≈ 0.08, 𝑝TP ≈ 0.92, 𝑝FP ≈
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0.15, 𝑝NPV ≈ 0.94, 𝑝FOR ≈ 0.06, 𝑝PPV ≈ 0.80, and 𝑝FDR ≈ 0.20. These are all reasonably good values, but must 
ultimately be judged according to the ThriveGuild problem owner's goals and objectives. 

6.1.2 Summary Performance Metrics 
Collectively, false negatives and false positives are errors. The probability of error, also known as the error 
rate, is the sum of the false negative rate and false positive rate weighted by the prior probabilities: 

𝑝E = 𝑝0𝑝FP + 𝑝1𝑝FN. 

Equation 6.6 

The balanced probability of error, also known as the balanced error rate, is the unweighted average of the 
false negative rate and false positive rate: 

𝑝BE =
1

2
𝑝FP +

1

2
𝑝FN. 

Equation 6.7 

They summarize the basic performance of the decision function. Balancing is useful when there are a 
lot more data points with one label than the other, and you care about each type of error equally. Accuracy, 
the complement of the probability of error: 1 − 𝑝E, and balanced accuracy, the complement of the balanced 
probability of error: 1 − 𝑝BE, are sometimes easier for problem owners to appreciate than error rates.  

The 𝐹1-score, the harmonic mean of 𝑝TP and 𝑝PPV, is an accuracy-like summary measure to 
characterize the quality of a prediction rather than the decision function: 

𝐹1 = 2
𝑝TP𝑝PPV

𝑝TP + 𝑝PPV
. 

Equation 6.8 

Continuing the example from before with 𝑝TP ≈ 0.92 and 𝑝PPV ≈ 0.80, let ThriveGuild’s prior 
probability of receiving applications to be denied according to some ground truth be 𝑝0 = 0.65 and 
applications to be approved be 𝑝1 = 0.35. Then, plugging in to the relevant equations above, you’ll find 
ThriveGuild to have 𝑝E ≈ 0.13, 𝑝BE ≈ 0.11, and 𝐹1 ≈ 0.86. Again, these are reasonable values that may be 
deemed acceptable to the problem owner. 

As the data scientist, you can get pretty far with these abstract TN, FN, TP, and FP events, but they 
have to be put in the context of the problem owner’s goals. ThriveGuild cares about making good bets on 
borrowers so that they are profitable. More generally across real-world applications, error events yield 
significant consequences to affected people including loss of life, loss of liberty, loss of livelihood, etc. 
Therefore, to truly characterize the performance of a decision function, it is important to consider the 
costs associated with the different events. You can capture these costs through a cost function 𝑐(𝑌, 𝑦̂(𝑋)) 
and denote the costs as 𝑐(0,0) = 𝑐00, 𝑐(1,0) = 𝑐10, 𝑐(1,1) = 𝑐11, and 𝑐(0,1) = 𝑐01, respectively. 

Taking costs into account, the characterization of performance for the decision function is known as 
the Bayes risk 𝑅: 
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𝑅 = (𝑐10 − 𝑐00)𝑝0𝑝𝐹𝑃 + (𝑐01 − 𝑐11)𝑝1𝑝𝐹𝑁 + 𝑐00𝑝0 + 𝑐11𝑝1. 

Equation 6.9 

Breaking the equation down, you’ll see that the two error probabilities, 𝑝𝐹𝑃 and 𝑝𝐹𝑁 are the main 
components, multiplied by their relevant prior probabilities and costs. The costs of the non-error events 
appear just multiplied by their costs. The Bayes risk is the performance metric most often used in 
finding optimal decision functions. Actually finding the decision function is known as solving the 
Bayesian detection problem. Eliciting the cost function 𝑐(⋅,⋅) for a given real-world problem from the 
problem owner is part of value alignment, described in Chapter 14. 

A mental model or roadmap, shown in Figure 6.2, to hold throughout the rest of the chapter is that 
the Bayes risk and the Bayesian detection problem are the central concept, and all other concepts are 
related to the central concept in various ways and for various purposes. The terms and concepts that 
have not yet been defined and evaluated are coming up soon. 

 
Figure 6.2. A mental model for different concepts in detection theory surrounding the central concept of Bayes 
risk and Bayesian detection. A diagram with Bayes risk and Bayesian detection at the center and four 
other groups of concepts radiating outwards. False positive rate, false negative rate, error rate, and ac-
curacy are special cases. Receiver operating characteristic, recall-precision curve, and area under the 
curve arise when examining all operating points. Brier score and calibration curve arise in probabilis-
tic risk assessment. False discover rate, false omission rate, and 𝐹1-score relate to performance of pre-
dictions. 

Because getting things right is a good thing, it is often assumed that there is no cost to correct 
decisions, i.e., 𝑐00 = 0 and 𝑐11 = 0, which is also assumed in this book going forward. In this case, the 
Bayes risk simplifies to: 
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𝑅 = 𝑐10𝑝0𝑝𝐹𝑃 + 𝑐01𝑝1𝑝𝐹𝑁. 

Equation 6.10 

To arrive at this simplified equation, just insert zeros for 𝑐00 and 𝑐11 in Equation 6.9. The Bayes risk with 
𝑐10 = 1 and 𝑐01 = 1 is the probability of error.  

We are implicitly assuming that 𝑐(⋅,⋅) does not depend on 𝑋 except through 𝑦̂(𝑋). This assumption is 
not required, but made for simplicity. You can easily imagine scenarios in which the cost of a decision 
depends on the feature. For example, if one of the features used in the loan approval decision by 
ThriveGuild is the value of the loan, the cost of an error (monetary loss) depends on that feature. 
Nevertheless, for simplicity, we usually make the assumption that the cost function does not explicitly 
depend on the feature value. For example, under this assumption, the cost of a false negative may be 
𝑐10 = 100,000 dollars and the cost of a false positive 𝑐01 = 50,000 dollars for all applicants. 

6.1.3 Accounting for Different Operating Points 
The Bayes risk is all well and good if there is a fixed set of prior probabilities and a fixed set of costs, but 
things change. If the economy improves, potential borrowers might become more reliable in loan 
repayment. If a different problem owner comes in and has a different interpretation of opportunity cost, 
then the cost of false negatives 𝑐10 changes. How should you think about the performance of decision 
functions across different sets of those values, known as different operating points?  

Many decision functions are parameterized by a threshold 𝜂 (including the optimal decision function 
that will be demonstrated in Section 6.2). You can change the decision function to be more or less 
forgiving of false positives or false negatives, but not both at the same time. Varying 𝜂 explores this 
tradeoff and yields different error probability pairs (𝑝FP, 𝑝FN), i.e. different operating points. 
Equivalently, different operating points correspond to different false positive rate and true positive rate 
pairs (𝑝FP, 𝑝TP). The curve traced out on the 𝑝FP–𝑝TP plane as the parameter 𝜂 is varied from zero to 
infinity is the receiver operating characteristic (ROC). The ROC takes values (𝑝FP = 0, 𝑝TP = 0) when 𝜂 → ∞ 
and (𝑝FP = 1, 𝑝TP = 1) when 𝜂 → 0. You can understand this because at one extreme, the decision function 
always says 𝑦̂ = 0; in this case there are no FPs and no TPs. At the other extreme, the decision function 
always says 𝑦̂ = 1; in this case all decisions are either FPs or TPs. 

The ROC is a concave, nondecreasing function illustrated in Figure 6.3. The closer to the top left 
corner it goes, the better. The best ROC for discrimination goes straight up to (0,1) and then makes a 
sharp turn to the right. The worst ROC is the diagonal line connecting (0,0) and (1,1) achieved by random 
guessing. The area under the ROC, also known as the area under the curve (AUC) synthesizes performance 
across all operating points and should be selected as a metric when it is likely that the same threshold-
parameterized decision function will be applied in very different operating conditions. Given the shapes 
of the worst (diagonal line) and best (straight up and then straight to the right) ROC curves, you can see 
that the AUC ranges from 0.5 (area of bottom right triangle) to 1 (area of entire square).4  

 

 
4The recall-precision curve is an alternative to understand performance across operating points. It is the curve traced out on 
the 𝑝PPV–𝑝TP plane starting at (𝑝𝑃𝑃𝑉 = 0, 𝑝𝑇𝑃 = 1) and ending at  (𝑝𝑃𝑃𝑉 = 1, 𝑝𝑇𝑃 = 0). It has a one-to-one mapping with the ROC 
and is more easily understood by some people. Jesse Davis and Mark Goadrich. “The Relationship Between Precision-Recall 
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Figure 6.3. An example receiver operating characteristic (ROC). Accessible caption. A plot with 𝑝TP on the 
vertical axis and 𝑝FP on the horizontal axis. Both axes range from 0 to 1. A dashed diagonal line goes 
from (0,0) to (1,1) and corresponds to random guessing. A solid concave curve, the ROC, goes from 
(0,0) to (1,1) staying above and to the left of the diagonal line. 

 

6.2 The Best That You Can Ever Do 
As the ThriveGuild data scientist, you have given the problem owner an entire menu of basic 
performance measures to select from and indicated when different choices are more and less 
appropriate. The Bayes risk is the most encompassing and most often used performance 
characterization for a decision function. Let’s say that Bayes risk was chosen in the problem 
specification stage of the machine learning lifecycle, including selecting the costs. Now you are in the 
modeling stage and need to figure out if the model is performing well. The best way to do that is to 
optimize the Bayes risk to obtain the best possible decision function with the smallest Bayes risk and 
compare the current model’s Bayes risk to it.  

“The predictability ceiling is often ignored in mainstream ML research. Every 
prediction problem has an upper bound for prediction—the Bayes-optimal 
performance. If you don't have a good sense of what it is for your problem, you are in 
the dark.” 

—Mert R. Sabuncu, computer scientist at Cornell University 

Let us denote the best possible decision function as 𝑦̂∗(⋅) and its corresponding Bayes risk as 𝑅∗. They 
are specified using the minimization of the expected cost: 

 

 
and ROC Curves.” In: Proceedings of the International Conference on Machine Learning. Pittsburgh, Pennsylvania, USA, Jun. 2006, 
pp. 233–240.  
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𝑦̂∗(⋅) = arg min
𝑦̂(⋅)

𝐸[𝑐(𝑌, 𝑦̂(𝑋))], 

Equation 6.11 

where the expectation is over both 𝑋 and 𝑌. Because it achieves the minimal cost, the function 𝑦̂∗(⋅) is 
the best possible 𝑦̂(⋅) by definition. Whatever Bayes risk 𝑅∗ it has, no other decision function can have a 
lower Bayes risk 𝑅.  

We aren’t going to work it out here, but the solution to the minimization problem in Equation 6.11 is 
the Bayes optimal decision function, and takes the following form: 

𝑦̂∗(⋅) = {
0, Λ(𝑥) ≤ 𝜂

1, Λ(𝑥) > 𝜂
 

Equation 6.12 

where Λ(𝑥), known as the likelihood ratio, is defined as: 

Λ(𝑥) =
𝑝𝑋∣𝑌( 𝑥 ∣ 𝑌 = 1 )

𝑝𝑋∣𝑌( 𝑥 ∣ 𝑌 = 0 )
 

Equation 6.13 

and 𝜂, known as the threshold, is defined as: 

𝜂 =
𝑐10𝑝0

𝑐01𝑝1

. 

Equation 6.14 

The likelihood ratio is as its name says: it is the ratio of the likelihood functions. It is a scalar value even 
if the features 𝑋 are multivariate. As the ratio of two non-negative pdf values, it has the range [0, ∞) and 
can be viewed as a random variable. The threshold is made up of both costs and prior probabilities. This 
optimal decision function 𝑦̂∗(⋅) given in Equation 6.12 is known as the likelihood ratio test.  

6.2.1 Example 
As an example, let ThriveGuild’s loan approval decision be determined solely by one feature 𝑋: the 
income of the applicant. Recall that we modeled income to be exponentially-distributed in Chapter 3. 
Specifically, let 𝑝𝑋∣𝑌( 𝑥 ∣ 𝑌 = 1 ) = 0.5𝑒−0.5𝑥 and 𝑝𝑋∣𝑌( 𝑥 ∣ 𝑌 = 0 ) = 𝑒−𝑥, both for 𝑥 ≥ 0. Like earlier in this 
chapter, 𝑝0 = 0.65, 𝑝1 = 0.35, 𝑐10 = 100000, and 𝑐01 = 50000. Then simply plugging in to Equation 6.13, 
you’ll get: 

Λ(𝑥) =
0.5𝑒−0.5𝑥

𝑒−𝑥
= 0.5𝑒0.5𝑥, 𝑥 ≥ 0 

Equation 6.15 
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and plugging in to Equation 6.14, you’ll get: 

𝜂 =
100000

50000

0.65

0.35
= 3.7. 

Equation 6.16 

Plugging these expressions into the Bayes optimal decision function given in Equation 6.12, you’ll get: 

𝑦̂∗(𝑥) = {
0, 0.5𝑒0.5𝑥 ≤ 3.7

1, 0.5𝑒0.5𝑥 > 3.7
 

Equation 6.17 

which can be simplified to: 

𝑦̂∗(𝑥) = {
0, 𝑥 ≤ 4
1, 𝑥 > 4

 

Equation 6.18 

by multiplying both sides of the inequalities in both cases by 2, taking the natural logarithm, and then 
multiplying by 2 again. Applicants with an income less than or equal to 4 are denied and applicants with 
an income greater than 4 are approved. The expected value of 𝑋 ∣ 𝑌 =  1 is 2 and the expected value of 
𝑋 ∣ 𝑌 =  0 is 1. Thus in this example, an applicant's income has to be quite a bit higher than the mean to 
be approved. 

You should use the Bayes-optimal risk 𝑅∗ to lower bound the performance of any machine learning 
classifier that you might try for a given data distribution.5 No matter how hard you work or how creative 
you are, you can never overcome the Bayes limit. So you should be happy if you get close. If the Bayes-
optimal risk itself is too high, then the thing to do is to go back to the data understanding and data 
preparation stages of the machine learning lifecycle and get more informative data.  

 

6.3 Risk Assessment and Calibration 
To approve or to deny, that is the question for ThriveGuild. Or is it? Maybe the question is actually: what 
is the probability that the borrower will default? Maybe the problem is not binary classification, but 
probabilistic risk assessment. It is certainly an option for you, the data scientist, and the problem owner 
to consider during problem specification. Thresholding a probabilistic risk assessment yields a 
classification, but there are a few subtleties for you to weigh.  

 

 
5There are techniques for estimating the Bayes risk of a dataset without having access to its underlying probability distribu-
tion. Ryan Theisen, Huan Wang, Lav R. Varshney, Caiming Xiong, and Richard Socher. “Evaluating State-of-the-Art Classifica-
tion Models Against Bayes Optimality” In: Advances in Neural Information Processing Systems 34 (Dec. 2021).  



Detection Theory | 71 

The likelihood ratio ranges from zero to infinity and the threshold value 𝜂 =  1 is optimal for equal 
priors and equal costs. Applying any monotonically increasing function to both the likelihood ratio and 
the threshold still yields a Bayes optimal decision function with the same risk 𝑅∗. That is, 

𝑦̂∗(⋅) = {
0, 𝑔(Λ(𝑥)) ≤ 𝑔(𝜂)

1, 𝑔(Λ(𝑥)) > 𝑔(𝜂)
 

Equation 6.19 

for any monotonically increasing function 𝑔(⋅) is still optimal.  
It is somewhat more natural to think of a score 𝑠(𝑥) to be in the range [0,1] because it corresponds to 

the label values 𝑦 ∈ {0,1} and could also potentially be interpreted as a probability. The score, a 
continuous-valued output of the decision function, can then be thought of as a confidence in the 
prediction and be obtained by applying a suitable 𝑔 function to the likelihood ratio. In this case, 0.5 is the 
threshold for equal priors and costs. Intermediate score values are less confident and extreme score 
values (towards 0 and 1) are more confident. Just as the likelihood ratio may be viewed as a random 
variable, the score may also be viewed as a random variable 𝑆. The Brier score is an appropriate 
performance metric for the continuous-valued output score of the decision function: 

Brier score = 𝐸[(𝑆 − 𝑌)2]. 

Equation 6.20 

It is the mean-squared error of the score S with respect to the true label Y. For a finite number of samples 
{(𝑠1, 𝑦1), … , (𝑠𝑛 , 𝑦𝑛)}, you can compute it as: 

Brier score =
1

𝑛
∑(𝑠𝑗 − 𝑦𝑗)

2
𝑛

𝑗=1

. 

Equation 6.21 

The Brier score decomposes into the sum of two separable components: calibration and refinement.6 
The concept of calibration is that the predicted score corresponds to the proportion of positive true 
labels. For example, a bunch of data points all having a calibrated score of 𝑠 = 0.7 implies that 70% of 
them have true label 𝑦 = 1 and 30% of them have true label 𝑦 = 0. Said another way, perfect calibration 
implies that the probability of the true label 𝑌 being 1 given the predicted score 𝑆 being 𝑠 is the value 𝑠 
itself: 𝑃( 𝑌 = 1 ∣ 𝑆 = 𝑠 ) = 𝑠. Calibration is important for probabilistic risk assessments: a perfectly 
calibrated score can be interpreted as a probability of predicting one class or the other. It is also an 
important concept for evaluating causal inference methods, described in Chapter 8, for algorithmic 
fairness, described in Chapter 10, and for communicating uncertainty, described in Chapter 13. 

 

 
6José Hernández-Orallo, Peter Flach, and Cèsar Ferri. “A Unified View of Performance Metrics: Translating Threshold Choice 
into Expected Classification Loss.” In: Journal of Machine Learning Research 13 (Oct. 2012), pp. 2813–2869. 



72 | Trustworthy Machine Learning 

Since any monotonically increasing transformation 𝑔(⋅) can be applied to a decision function 
without changing its ability to discriminate, you can improve the calibration of a decision function by 
finding a better 𝑔(⋅). The calibration loss quantitatively captures how close a decision function is to 
perfect calibration. The refinement loss is a sort of variance of how tightly the true labels distribute 
around a given score. For {(𝑠1, 𝑦1), … , (𝑠𝑛 , 𝑦𝑛)} that have been sorted by their score values and binned into 
𝑘 groups {ℬ1, … , ℬ𝑘} with average values {(𝑠1̅, 𝑦̅1), … , (𝑠𝑘̅ , 𝑦̅𝑘)} within the bins 

calibration loss =
1

𝑛
∑‖ℬ𝑖‖

𝑘

𝑖=1

(𝑠𝑖̅ − 𝑦̅𝑖)2 

refinement loss =
1

𝑛
∑‖ℬ𝑖‖

𝑘

𝑖=1

𝑦̅𝑖(1 − 𝑦̅𝑖). 

Equation 6.22 

As stated earlier, the sum of the calibration loss and refinement loss is the Brier score.  
A calibration curve, also known as a reliability diagram, shows the (𝑠𝑘̅ , 𝑦̅𝑘) values as a plot. One 

example is shown in Figure 6.4. The closer to a straight diagonal from (0,0) to (1,1), the better. Plotting 
this curve is a good diagnostic tool for you to understand the calibration of a decision function. 

   
Figure 6.4. An example calibration curve. Accessible caption. A plot with 𝑃(𝑌 = 1) on the vertical axis and 
𝑠 on the horizontal axis. Both axes range from 0 to 1. A dashed diagonal line goes from (0,0) to (1,1) and 
corresponds to perfect calibration. A solid S-shaped curve, the calibration curve, goes from (0,0) to 
(1,1) starting below and to the right of the diagonal line before crossing over to being above and to the 
left of the diagonal line. 

 

6.4 Summary 
▪ Four possible events result from binary decisions: false negatives, true negatives, false positives, 

and true positives.  

▪ Different ways to combine the probabilities of these events lead to classifier performance metrics 
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appropriate for different real-world contexts.  

▪ One important one is Bayes risk: the combination of the false negative probability and false 
positive probability weighted by both the costs of those errors and the prior probabilities of the 
labels. It is the basic basic performance measure for the first attribute of safety and 
trustworthiness. 

▪ Detection theory, the study of optimal decisions, which provides fundamental limits to how well 
machine learning models may ever perform is a tool for you to assess the basic performance of 
your models. 

▪ Decision functions may output continuous-valued scores rather than only hard, zero or one, 
decisions. Scores indicate confidence in a prediction. Calibrated scores are those for which the 
score value is the probability of a sample belonging to a label class. 
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7  
Supervised Learning 

The (fictional) information technology company JCN Corporation is reinventing itself and changing its 
focus to artificial intelligence and cloud computing. As part of managing its talent during this enterprise 
transformation, it is conducting a machine learning project to estimate the expertise of its employees 
from a variety of data sources such as self-assessments of skills, work artifacts (patents, publications, 
software documentation, service claims, sales opportunities, etc.), internal non-private social media 
posts, and tabular data records including the employee’s length of service, reporting chain, and pay 
grade. A random subset of the employees has been explicitly evaluated on a binary yes/no scale for 
various AI and cloud skills, which constitute the labeled training data for machine learning. JCN 
Corporation’s data science team has been given the mission to predict the expertise evaluation for all 
the other employees in the company. For simplicity, let’s focus on only one of the expertise areas: 
serverless architecture.  

Imagine that you are on JCN Corporation’s data science team and have progressed beyond the 
problem specification, data understanding, and data preparation phases of the machine learning 
lifecycle and are now at the modeling phase. By applying detection theory, you have chosen an 
appropriate quantification of performance for predicting an employee’s skill in serverless architecture: 
the error rate—the Bayes risk with equal costs for false positives and false negatives—introduced in 
Chapter 6.  

It is now time to get down to the business of learning a decision function (a classifier) from the 
training data that generalizes well to predict expertise labels for the unlabeled employees. Deep learning 
is one family of classifiers that is on the tip of everyone’s tongue. It is certainly one option for you, but 
there are many other kinds of classifiers too.  How will you evaluate different classification algorithms 
to select the best one for your problem? 

“My experience in industry strongly confirms that deep learning is a narrow sliver of 
methods needed for solving complex automated decision making problems.” 

—Zoubin Ghahramani, chief scientist at Uber 
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A very important concept in practicing machine learning, first mentioned in Chapter 2, is the no free 
lunch theorem. There is no one single machine learning method that is best for all datasets.1 What is a 
good choice for one dataset might not be so great for another dataset. It all depends on the characteristics 
of the dataset and the inductive bias of the method: the assumptions on how the classifier should generalize 
outside the training data points. The challenge in achieving good generalization and a small error rate 
is protecting against overfitting (learning a model that too closely matches the idiosyncrasies of the 
training data) and underfitting (learning a model that does not adequately capture the patterns in the 
training data). The goal is to get to the Goldilocks point where things are not too hot (overfitting) and not 
too cold (underfitting), but just right. 

An implication of the no free lunch theorem is that you must try several different methods for the 
JCN Corporation expertise problem and see how they perform empirically before deciding on one over 
another. Simply brute forcing it—training all the different methods and computing their test error to see 
which one is smallest—is common practice, but you decide that you want to take a more refined 
approach and analyze the inductive biases of different classifiers. Your analysis will determine the 
domains of competence of various classifiers: what types of datasets do they perform well on and what type 
of datasets do they perform poorly on.2 Recall that competence or basic accuracy is the first attribute of 
trustworthy machine learning as well as the first half of safety.  

Why would you want to take this refined approach instead of simply applying a bunch of machine 
learning methods from software packages such as scikit-learn, tensorflow, and pytorch without 
analyzing their inductive biases? First, you have heeded the admonitions from earlier chapters to be 
safe and to not take shortcuts. More importantly, however, you know you will later be creating new 
algorithms that respect the second (reliability) and third (interaction) attributes of trustworthiness. You 
must not only be able to apply algorithms, you must be able to analyze and evaluate them before you can 
create. Now go forth and analyze classifiers for inventorying expertise in the JCN Corporation workforce. 

 

7.1 Domains of Competence 
Different classifiers work well on different datasets depending on their characteristics.3 But what 
characteristics of a dataset matter? What are the parameters of a domain of competence? A key concept 
to answer those questions is the decision boundary. In Chapter 6, you learned that the Bayes optimal 
decision function is a likelihood ratio test which is a threshold of the one-dimensional likelihood ratio. 
If you invert the likelihood ratio, you can go back to the feature space with 𝑑 feature dimensions 
𝑥(1), … , 𝑥(𝑑) and trace out surfaces to which that single threshold value maps. The collection of these 
surfaces is a level set of the likelihood ratio function and is known as the decision boundary. Imagine the 
likelihood ratio function being like the topography and bathymetry of the Earth. Anything underwater 
receives the classification 𝑦̂ = 0 (employee is unskilled in serverless architecture) and anything above 

 

 
1David H. Wolpert. “The Lack of A Priori Distinctions Between Learning Algorithms.” In: Neural Computation 8.7 (Oct. 1996), pp. 
1341–1390. 
2Tin Kam Ho and Ester Bernadó-Mansilla. “Classifier Domains of Competence in Data Complexity Space.” In: Data Complexity in 
Pattern Recognition. Ed. by Mitra Basu and Tin Kam Ho. London, England, UK: Springer, 2006, pp. 135–152.  
3Maniel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. “Do We Need Hundreds of Classifiers to Solve 
Real World Classification Problems?” In: Journal of Machine Learning Research 15 (Oct. 2014), pp. 3133–3181.  
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water receives the classification 𝑦̂ = 1 (employee is skilled in serverless architecture). Sea level is the 
threshold value and the coastline is the level set or decision boundary. An example of a decision 
boundary for a two-dimensional feature space is shown in Figure 7.1. 

 
Figure 7.1. An example of a decision boundary in a feature space. The gray regions correspond to feature values 
for which the decision function predicts employees are skilled in serverless architecture. The white regions corre-
spond to features for which the decision function predicts employees are unskilled in serverless architecture. The 
black lines are the decision boundary. Accessible caption. A stylized plot with the first feature dimension 
𝑥(1) on the horizontal axis and the second feature dimension 𝑥(2) on the vertical axis. The space is par-
titioned into a couple of blob-like gray regions labeled 𝑦̂ = 1 and a white region labeled 𝑦̂ = 0. The 
boundary between the regions is marked as the decision boundary. Classifier regions do not have to be 
all one connected component. 

Three key characteristics of a dataset determine how well the inductive biases of a classifier match 
the dataset: 

1. overlap of data points from the two class labels near the decision boundary, 

2. linearity or nonlinearity of the decision boundary, and 

3. number of data points, their density, and amount of clustering. 

Classifier domains of competence are defined in terms of these three considerations.4 Importantly, 
domains of competence are relative notions: does one classification algorithm work better than others?5 
They are not absolute notions, because at the end of the day, the absolute performance is limited by the 
Bayes optimal risk defined in Chapter 6. For example, one classification method that you tried may work 
better than others on datasets with a lot of class overlap near the decision boundary, nearly linear shape 
of the decision boundary, and not many data points. Another classification method may work better than 

 

 
4In the scope of this chapter, the JCN team use these characteristics qualitatively as a means of gaining intuition. Quantitative 
measures for these characteristics are described by Tin Kam Ho and Mitra Basu. “Complexity Measures of Supervised Classifi-
cation Problems.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence 24.3 (Mar. 2002), pp. 289–300.  
5For the purposes of this chapter, ‘work better’ is only in terms of basic performance (the first attribute of trustworthiness), not 
reliability or interaction (the second and third attributes of trustworthiness). Classifier domains of reliability and domains of 
quality interaction can also be defined. 
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others on datasets without much class overlap near a tortuously-shaped decision boundary. Yet another 
classification method may work better than others on very large datasets. In the remainder of this 
chapter, you will analyze many different supervised learning algorithms. The aim is not only describing 
how they work, but analyzing their inductive biases and domains of competence.  

 

7.2 Two Ways to Approach Supervised Learning 
Let’s begin by cataloging what you and the team of JCN Corporation data scientists have at your disposal. 
Your training dataset consists of 𝑛 samples (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛) independently drawn from the 
probability distribution 𝑝𝑋,𝑌(𝑥, 𝑦). The features 𝑥𝑗 sampled from the random variable 𝑋 are numerical or 
categorical quantities derived from skill self-assessments, work artifacts, and so on. There are 𝑑 
features, so 𝑥𝑗 is a 𝑑-dimensional vector. The labels 𝑦𝑗, sampled from the random variable 𝑌, are the 
binary (zero or one) expertise evaluations on serverless architecture. Importantly, you do not have 
access to the precise distribution 𝑝𝑋,𝑌(𝑥, 𝑦), but only to the finite number of samples contained in the 
training dataset drawn from the distribution. This is the key difference between the supervised machine 
learning problem and the Bayesian detection problem introduced in Chapter 6. The goal is the same in 
both the machine learning and detection problems: find a decision function 𝑦̂ that predicts labels from 
features.  

What are your options to find the classifier 𝑦̂ based on the training data? You cannot simply minimize 
the Bayes risk functional or the probability of error directly, because that would rely on full knowledge 
of the probability distribution of the features and labels, which you do not have. You and the team have 
two options: 

1. plug-in approach: estimate the likelihood functions and prior probabilities from the training 
data, and plug them into the Bayes optimal likelihood ratio test described in Chapter 6, or  

2. risk minimization: optimize a classifier over an empirical approximation to the error rate com-
puted on the training data samples.  

There are specific methods within these two broad categories of supervised classification algorithms. A 
mental model for different ways of doing supervised machine learning is shown in Figure 7.2. 

 

7.3 Plug-In Approach 
First, you and the rest of the JCN Corporation data science team try out plug-in methods for supervised 
classification. The main idea is to use the training data to estimate the likelihood functions 
𝑝𝑋∣𝑌( 𝑥 ∣∣ 𝑦 = 0 ) and 𝑝𝑋∣𝑌( 𝑥 ∣∣ 𝑦 = 1 ), and then plug them into the likelihood ratio to obtain the classifier.  

7.3.1 Discriminant Analysis 
One of the most straightforward plug-in methods, discriminant analysis, assumes a parametric form for 
the likelihood functions and estimates their parameters. Then just like in Chapter 6, it obtains a decision 
function by taking the ratio of these likelihood functions and comparing them to a threshold 𝜂. The actual 
underlying likelihood functions do not have to be exactly their assumed forms and usually aren’t in 
practice. If they are somewhat close, that is good enough. The assumed parametric form is precisely the 
inductive bias of discriminant analysis. 
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Figure 7.2. A mental model for different ways of approaching supervised machine learning. A hierarchy dia-
gram with supervised learning at its root. Supervised learning has children plug-in and risk minimiza-
tion. Plug-in has children parametric and nonparametric. Parametric has children linear discriminant 
analysis and quadratic discriminant analysis. Nonparametric has children k-nearest neighbor and na-
ïve Bayes. Risk minimization has children empirical risk minimization and structural risk minimiza-
tion. Structural risk minimization has children decision trees and forests, margin-based methods, and 
neural networks. 

If the assumed parametric form for the likelihood functions is multivariate Gaussian in 𝑑 dimensions 
with mean parameters 𝜇0 and 𝜇1 and covariance matrix parameters Σ0 and Σ1,6 then the first step is to 
compute their empirical estimates 𝜇̂0, 𝜇̂1, Σ̂0, and Σ̂1 from the training data, which you know how to do 
from Chapter 3. The second step is to plug those estimates into the likelihood ratio to get the classifier 
decision function. Under the Gaussian assumption, the method is known as quadratic discriminant 
analysis because after rearranging and simplifying the likelihood ratio, the quantity compared to a 
threshold turns out to be a quadratic function of 𝑥. If you further assume that the two covariance 
matrices Σ0 and Σ1 are the same matrix Σ, then the quantity compared to a threshold is even simpler: it 
is a linear function of 𝑥, and the method is known as linear discriminant analysis.  

Figure 7.3 shows examples of linear and quadratic discriminant analysis classifiers in 𝑑 = 2 
dimensions trained on the data points shown in the figure. The red diamonds are the employees in the 
training set unskilled at serverless architecture. The green squares are the employees in the training set 
skilled at serverless architecture. The domain of competence for linear and quadratic discriminant 
analysis is datasets whose decision boundary is mostly linear, with a dense set of data points of both 
class labels near that boundary.  

 

 
6The mathematical form of the likelihood functions is: 𝑝𝑋∣𝑌( 𝑥 ∣∣ 𝑦 = 0 ) =

1

√(2π)𝑑𝑑𝑒𝑡(Σ0)
𝑒−

1

2
(𝑥−𝜇0)𝑇Σ0

−1(𝑥−𝜇0) and 𝑝𝑋∣𝑌( 𝑥 ∣∣ 𝑦 = 1 ) =

1

√(2π)𝑑𝑑𝑒𝑡(Σ1)
𝑒−

1

2
(𝑥−𝜇1)𝑇Σ1

−1(𝑥−𝜇1), where det is the matrix determinant function. 
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Figure 7.3. Examples of linear discriminant analysis (left) and quadratic discriminant analysis (right) classifiers. 
Accessible Caption. Stylized plot showing two classes of data points arranged in a noisy yin yang or in-
terleaving moons configuration. The linear discriminant decision boundary is a straight line that cuts 
through the middle of the two classes. The quadratic discriminant decision boundary is a smooth 
curve that turns a little to enclose one of the classes. 

7.3.2 Nonparametric Density Estimation 
You continue your quest to analyze different classifiers for estimating the expertise of JCN employees. 
Instead of assuming a parametric form for the likelihood functions like in discriminant analysis, you try 
to estimate the likelihood functions in a nonparametric fashion. The word nonparametric is a misnomer. 
It does not mean that there are no parameters in the estimated likelihood function at all; it means that 
the number of parameters is on par with the number of training data points.  

A common way of estimating a likelihood function nonparametrically is kernel density estimation. The 
idea is to place a smooth function like a Gaussian pdf centered on each of the training data points and 
take the normalized sum of those functions as the estimate of the likelihood function. In this case, the 
parameters are the centers of the smooth functions, so the number of parameters equals the number of 
data points. Doing this for both likelihood functions separately, taking their ratio, and comparing to a 
threshold yields a valid classifier. However, it is a pretty complicated classifier. You would need a lot of 
data to get a good kernel density estimate, especially when the data has a lot of feature dimensions 𝑑.  

Instead of doing the full density estimate, a simplification is to assume that all the feature 
dimensions of 𝑋 are mutually independent. Under this assumption, the likelihood functions factor into 
products of one-dimensional pdfs that can be estimated separately with much less data. If you take the 
ratio of these products of one-dimensional pdfs (a likelihood ratio) and compare to a threshold, voilà, 
you have a naïve Bayes classifier. The name of this method contains ‘naïve’ because it is somewhat naïve 
to assume that all feature dimensions are independent—they never are in real life. It contains ‘Bayes’ 
because of plugging in to the Bayes-optimal likelihood ratio test. Often, this classifier does not 
outperform other classifiers in terms of accuracy, so its domain of competence is often non-existent. 

A different nonparametric method is the k-nearest neighbor classifier. The idea behind it is very 
simple. Look at the labels of the 𝑘 closest training data points and predict whichever label is more 
common in those nearby points. A distance metric is needed to measure ‘close’ and ‘near.’ Typically, 
Euclidean distance (the normal straight-line distance) is used, but other distance metrics could be used 
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instead. The k-nearest neighbor method works better than other classifiers when the decision boundary 
is very wiggly and broken up into lots of components, and when there is not much overlap in the classes. 
Figure 7.4 shows examples of naïve Bayes and k-nearest neighbor classifiers in two dimensions. The k-
nearest neighbor classifier in the figure has 𝑘 = 5. 

 
Figure 7.4. Examples of naïve Bayes (left) and k-nearest neighbor (right) classifiers. Accessible caption. Styl-
ized plot showing two classes of data points arranged in a noisy yin yang or interleaving moons config-
uration. The naïve Bayes decision boundary is a smooth curve that turns a little to enclose one of the 
classes. The k-nearest neighbor decision boundary is very jagged and traces out the positions of the 
classes closely. 

7.4 Risk Minimization Basics 
You and the JCN team have tried out a few plug-in methods for your task of predicting which employees 
are skilled in serverless architecture and are ready to move on to a different category of machine 
learning methods: risk minimization. Whereas plug-in methods take one step back from the Bayes-
optimal likelihood ratio test by estimating the likelihood functions from data, risk minimization takes 
two steps back and directly tries to find decision functions or decision boundaries that minimize an 
estimate of the Bayes risk. 

7.4.1 Empirical Risk Minimization  
Remember from Chapter 6 that the probability of error 𝑝E, the special case of the Bayes risk with equal 
costs that you’ve chosen as the performance metric, is: 

𝑝E = 𝑝0𝑃( 𝑦̂(𝑋) = 1 ∣∣ 𝑌 = 0 ) + 𝑝1𝑃( 𝑦̂(𝑋) = 0 ∣∣ 𝑌 = 1 ). 

Equation 7.1 

The prior probabilities of the class labels 𝑝0 and 𝑝1 multiply the probabilities of the events when the 
decision function is wrong 𝑃( 𝑦̂(𝑋) = 1 ∣∣ 𝑌 = 0 ) and 𝑃( 𝑦̂(𝑋) = 0 ∣∣ 𝑌 = 1 ). You cannot directly compute the 
error probability because you do not have access to the full underlying probability distribution. But is 
there an approximation to the error probability that you can compute using the training data?  
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First, because the training data is sampled i.i.d. from the underlying distribution, the proportion of 
employees in the training data set skilled and unskilled at serverless architecture will approximately 
match the prior probabilities 𝑝0 and 𝑝1, so you do not have to worry about them explicitly. Second, the 
probabilities of both the false positive event 𝑃( 𝑦̂(𝑋) = 1 ∣∣ 𝑌 = 0 ) and false negative event 
𝑃( 𝑦̂(𝑋) = 0 ∣∣ 𝑌 = 1 ) event can be expressed collectively as 𝑃(𝑦̂(𝑋) ≠ 𝑌), which corresponds to 𝑦̂(𝑥𝑗) ≠ 𝑦𝑗 
for training data samples. The zero-one loss function 𝐿 (𝑦𝑗 , 𝑦̂(𝑥𝑗)) captures this by returning the value 1 for 
𝑦̂(𝑥𝑗) ≠ 𝑦𝑗  and the value 0 for 𝑦̂(𝑥𝑗) = 𝑦𝑗 . Putting all these things together, the empirical approximation to 
the error probability, known as the empirical risk 𝑅emp, is: 

𝑅emp =
1

𝑛
∑ 𝐿 (𝑦𝑗 , 𝑦̂(𝑥𝑗))

𝑛

𝑗=1

. 

Equation 7.2 

Minimizing the empirical risk over all possible decision functions 𝑦̂ is a possible classification algorithm, 
but not one that you and the other JCN Corporation data scientists evaluate just yet. Let’s understand 
why not. 

7.4.2 Structural Risk Minimization  
Without any constraints, you can find a decision function that brings the empirical risk to zero but does 
not generalize well to new unseen data points. At the extreme, think about a classifier that memorizes 
the training data points and gets them perfectly correct, but always predicts 𝑦̂ = 0 (unskilled at 
serverless architecture) everywhere else. This is not the desired behavior—the classifier has overfit. So 
just minimizing the empirical risk does not yield a competent classifier. This memorizing classifier is 
pretty complex. There’s nothing smooth or simple about it because it has as many discontinuities as 
there are training set employees skilled at serverless architecture.  

Constraining the complexity of the classifier forces it to not overfit. To be a bit more precise, if you 
constrain the decision function 𝑦̂ to be an element of some class of functions or hypothesis space ℱ that 
only includes low-complexity functions, then you will prevent overfitting. But you can go too far with the 
constraints as well. If the hypothesis space is too small and does not contain any functions with the 
capacity to capture the important patterns in the data, it may underfit the data and not generalize either. 
It is important to control the hypothesis space to be just right. This idea is known as the structural risk 
minimization principle.  

Figure 7.5 shows the idea in pictorial form using a sequence of nested hypothesis spaces ℱ1 ⊂ ℱ2 ⊂

⋯ ⊂ ℱ6. As an example of nested hypothesis spaces, ℱ1 could be all constant functions, ℱ2 could be all 
linear functions, ℱ3 could be all quadratic functions, and ℱ6 could be all polynomial functions. ℱ1 
contains the least complex 𝑦̂ functions while ℱ6 also contains more complex 𝑦̂ functions. ℱ1 underfits as 
it has large values for both the empirical risk 𝑅emp calculated on the training data and the probability of 
error 𝑝E, which measures generalization. ℱ6 overfits as it has zero 𝑅emp and a large value for 𝑝E. ℱ2 
achieves a good balance and is just right.  
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Figure 7.5. Illustration of the structural risk minimization principle. Accessible caption. A plot with 𝑝E or 
𝑅emp on the vertical axis and increasing complexity of hypothesis spaces on the horizontal axis. The 
empirical risk decreases all the way to zero with increasing complexity. The generalization error first 
decreases and then increases. It has a sweet spot in the middle. 

The hypothesis space ℱ is the inductive bias of the classifier. Thus, within the paradigm of the 
structural risk minimization principle, different choices of hypothesis spaces yield different domains of 
competence. In the next section, you and your team of JCN data scientists analyze several different risk 
minimization classifiers popularly used in practice, including decision trees and forests, margin-based 
classifiers (logistic regression, support vector machines, etc.), and neural networks. 

 

7.5 Risk Minimization Algorithms 
You are now analyzing the competence of some of the most popular classifiers used today that fit into 
the risk minimization paradigm. The basic problem is to find the function 𝑓 within the hypothesis space 
ℱ that minimizes the average loss function 𝐿 (𝑦𝑗 , 𝑓(𝑥𝑗)):  

𝑦̂(∙) = arg min
𝑓∈ℱ

1

𝑛
∑ 𝐿 (𝑦𝑗 , 𝑓(𝑥𝑗)) .

𝑛

𝑗=1

 

Equation 7.3 

This equation may look familiar because it is similar to the Bayesian detection problem in Chapter 6. 
The function in the hypothesis space that minimizes the sum of the losses on the training data is 𝑦̂. 
Different methods have different hypothesis spaces ℱ and different loss functions 𝐿(⋅,⋅). An alternative 
way to control the complexity of the classifier is not through changing the hypothesis space ℱ, but 
through a complexity penalty or regularization term 𝐽(⋅) weighted by a regularization parameter 𝜆: 

𝑦̂(∙) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑓∈ℱ

1

𝑛
∑ 𝐿 (𝑦𝑗 , 𝑓(𝑥𝑗))

𝑛

𝑗=1

+ 𝜆𝐽(𝑓). 

Equation 7.4 
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The choice of regularization term 𝐽 also yields an inductive bias for you to analyze. 

7.5.1 Decision Trees and Forests 
One of the simplest hypothesis spaces is the set of decision stumps or one-rules. These classifiers create a 
single split along a single feature dimension like a numerical expertise self-assessment feature or a 
length of service feature. Any data point whose value is on one side of a threshold gets classified as 
skilled in serverless architecture, and on the other side as unskilled in serverless architecture. For 
categorical features, a split is just a partitioning of the values into two groups. The other features besides 
the one participating in the decision stump can be anything. An example of a decision stump is shown 
in Figure 7.6 as a node with two branches and also through its decision boundary.  

 
Figure 7.6. An example of a decision stump classifier. Accessible caption. On the left is a decision node 
𝑥(2) ≤ −0.278. When it is true, 𝑦̂ = 1 and when it is false, 𝑦̂ = 0. On the right is a stylized plot showing 
two classes of data points arranged in a noisy yin yang or interleaving moons configuration. The deci-
sion boundary is a horizontal line.   

The hypothesis space of decision trees includes decision functions with more complexity than 
decision stumps. A decision tree is created by splitting on single feature dimensions within each branch 
of the decision stump, splitting within those splits, and so on. An example of a decision tree with two 
levels is shown in Figure 7.7. Decision trees can go much deeper than two levels to create fairly complex 
decision boundaries. An example of a complex decision boundary from a decision tree classifier is 
shown in Figure 7.8. 
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Figure 7.7. An example of a two-level decision tree classifier. Accessible caption. On the left is a decision 
node 𝑥(2) ≤ −0.278. When it is true, there is another decision node 𝑥(1) ≤ −1.151. When this decision 
node is true, 𝑦̂ = 0 and when it is false, 𝑦̂ = 1. When the top decision node is false, there is another deci-
sion node 𝑥(1) ≤ 1.085. When this decision node is true, 𝑦̂ = 0 and when it is false, 𝑦̂ = 1. On the right is 
a stylized plot showing two classes of data points arranged in a noisy yin yang or interleaving moons 
configuration. The decision boundary is a made up of three line segments: the first segment is vertical, 
it turns right into a horizontal segment, and then up into another vertical segment. 

 
Figure 7.8. An example decision tree classifier with many levels. Accessible caption. A stylized plot showing 
two classes of data points arranged in a noisy yin yang or interleaving moons configuration. The deci-
sion boundary is a made up of several vertical and horizontal segments. 

The hypothesis space of decision forests is made up of ensembles of decision trees that vote for their 
prediction, possibly with an unequal weighting given to different trees. The weighted majority vote from 
the decision trees is the overall classification. The mental model for a decision forest is illustrated in 
Figure 7.9 and an example decision boundary is given in Figure 7.10. 
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Figure 7.9. A mental model for a decision forest. Accessible caption. Three individual decision trees each 
predict separately. Their predictions feed into a vote node which outputs 𝑦̂. The predictions from each 
tree are combined using a (weighted) majority vote. 
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Figure 7.10. An example decision forest classifier. Accessible caption. Stylized plot showing two classes of 
data points arranged in a noisy yin yang or interleaving moons configuration. The decision boundary is 
fairly jagged with mostly axis-aligned segments and traces out the positions of the classes closely. 

Decision stumps and decision trees can be directly optimized for the zero-one loss function that 
appears in the empirical risk.7 More commonly, however, greedy heuristic methods are employed for 
learning decision trees in which the split for each node is done one at a time, starting from the root and 
progressing to the leaves. The split is chosen so that each branch is as pure as can be for the two classes: 
mostly just employees skilled at serverless architecture on one side of the split, and mostly just 
employees unskilled at serverless architecture on the other side of the split. The purity can be quantified 
by two different information-theoretic measures, information gain and Gini index, which were 
introduced in Chapter 3. Two decision tree algorithms are popularly-used: the C5.0 decision tree that uses 
information gain as its splitting criterion, and the classification and regression tree (CART) that uses Gini 
index as its splitting criterion. The depth of decision trees is controlled to prevent overfitting. The 
domain of competence of C5.0 and CART decision trees is tabular datasets in which the phenomena 
represented in the features tend to have threshold and clustering behaviors without much class overlap. 

Decision forests are made up of a lot of decision trees. C5.0 or CART trees are usually used as these 
base classifiers. There are two popular ways to train decision forests: bagging and boosting. In bagging, 
different subsets of the training data are presented to different trees and each tree is trained separately. 
All trees have equal weight in the majority vote. In boosting, a sequential procedure is followed. The first 
tree is trained in the standard manner. The second tree is trained to focus on the training samples that 
the first tree got wrong. The third tree focuses on the errors of the first two trees, and so on. Earlier trees 
receive greater weight. Decision forests have good competence because of the diversity of their base 
classifiers. As long as the individual trees are somewhat competent, any unique mistake that any one 
tree makes is washed out by the others for an overall improvement in generalization. 

The random forest classifier is the most popular bagged decision forest and the XGBoost classifier is 
the most popular boosted decision forest. Both have very large domains of competence. They are robust 

 

 
7Oktay Günlük, Jayant Kalagnanam, Minhan Li, Matt Menickelly, and Katya Scheinberg. “Optimal Generalized Decision Trees 
via Integer Programming.” arXiv:1612.03225, 2019.  
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and work extremely well for almost all kinds of structured datasets. They are the first-choice algorithms 
for practicing data scientists to achieve good accuracy models with little to no tuning of parameters. 

7.5.2 Margin-Based Methods 
Margin-based classifiers constitute another popular family of supervised learning algorithms. This family 
includes logistic regression and support vector machines (SVMs). The hypothesis space of margin-based 
classifiers is more complex than decision stumps, but in a different way than decision trees. Margin-
based classifiers allow any linear decision boundary rather than only ones parallel to single feature 
dimensions. Going even further, margin-based classifiers can have nonlinear decision boundaries in 
the original feature space by applying nonlinear functions to the features and finding linear decision 
boundaries in that transformed space.8 

The main concept of these algorithms is the margin, the distance of data points to the decision 
boundary. With a linear decision boundary, the form of the classifier is 𝑦̂(𝑥𝑗) = step(𝑤𝑇𝑥𝑗) =

(sign(𝑤𝑇𝑥𝑗) + 1)/2,9 where 𝑤 is a weight vector or coefficient vector that is learned from the training data. 
The absolute value of 𝑤𝑇𝑥𝑗 is the distance of the data point to the decision boundary and is thus the 
margin of the point. The quantity 𝑤𝑇𝑥𝑗 is positive if 𝑥𝑗 is on one side of the hyperplane defined by 𝑤 and 
negative if 𝑥𝑗 is on the other side. The step function gives a classification of 0 (unskilled at serverless 
architecture) for negative margin and a classification of 1 (skilled at serverless architecture) for positive 
margin. The stuff with the sign function (adding one and dividing by two) is just a way to recreate the 
behavior of the step function.  

Surrogates for the zero-one loss function 𝐿 are used in the risk minimization problem. Instead of 
taking two arguments, these margin-based loss functions take the single argument (2𝑦𝑗– 1)𝑤𝑇𝑥𝑗. When 
𝑤𝑇𝑥𝑗 is multiplied by (2𝑦𝑗– 1), the result is positive for a correct classification and negative for an 
incorrect classification.10 The loss is large for negative inputs and small or zero for positive inputs. In 
logistic regression, the loss function is the logistic loss: 𝐿 ((2𝑦𝑗– 1)𝑤𝑇𝑥𝑗) = log(1 + 𝑒−(2𝑦𝑗–1)𝑤𝑇𝑥𝑗) and in 
SVMs, the loss function is the hinge loss: 𝐿 ((2𝑦𝑗– 1)𝑤𝑇𝑥𝑗) = max{ 0,1 − (2𝑦𝑗– 1)𝑤𝑇𝑥𝑗}. The shape of these 
loss function curves is shown in Figure 7.11.  

The regularization term 𝐽 for the standard forms of logistic regression and SVMs is ‖𝑤‖2, the length-
squared of the coefficient vector (also known as the ℓ2-norm squared). The loss function, regularization 
term, and nonlinear feature mapping together constitute the inductive bias of the classifier. An 
alternative regularization term is the sum of the absolute values of the coefficients in 𝑤 (also known as 
the ℓ1-norm), which provides the inductive bias for 𝑤 to have many zero-valued coefficients. Example 
linear and nonlinear logistic regression and SVM classifiers are shown in Figure 7.12. The domain of 
competence for margin-based classifiers is fairly broad: structured datasets of moderate size. SVMs 
work a little better than logistic regression when the features are noisy. 

 

 
8The nonlinear functions of the features are usually kernel functions, which satisfy certain mathematical properties that allow 
for efficient optimization during training. 
9In the nonlinear case, replace 𝑤𝑇𝑥𝑗  with 𝑤𝑇𝑘(𝑥𝑗) for a kernel function 𝑘. To avoid cluttering up the mathematical notation, 
always assume that 𝑥𝑗  or 𝑘(𝑥𝑗) has a column of all ones to allow for a constant shift.  
10Computing (2𝑦𝑗– 1) is the inverse of applying the sign function, adding one, and dividing by two. It is performed to get values 
−1 and +1 from the class labels. When a classification is correct, 𝑤𝑇𝑥𝑗  and (2𝑦𝑗– 1) have the same sign. Multiplying two num-
bers with the same sign results in a positive number. When a classification is incorrect, 𝑤𝑇𝑥𝑗  and (2𝑦𝑗– 1) have different signs. 
Multiplying two numbers with different signs results in a negative number. 
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Figure 7.11. Margin-based loss functions. Accessible caption. A plot with loss on the vertical axis and mar-
gin on the horizontal axis. The logistic loss decreases smoothly. The hinge loss decreases linearly until 
the point (1,0), after which it is 0 for all larger values of the margin. 

 
Figure 7.12. Example linear logistic regression (top left), linear SVM (top right), nonlinear polynomial SVM (bot-
tom left), and nonlinear radial basis function SVM (bottom right) classifiers. Accessible caption. Stylized plot 
showing two classes of data points arranged in a noisy yin yang or interleaving moons configuration. 
The linear logistic regression and linear SVM decision boundaries are diagonal lines through the mid-
dle of the moons. The polynomial SVM decision boundary is a diagonal line with a smooth bump to bet-
ter follow the classes. The radial basis function SVM decision boundary smoothly encircles one of the 
classes with a blob-like region. 
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7.5.3 Neural Networks 
The final family of classifiers that you and the other JCN Corporation data scientists analyze is artificial 
neural networks. Neural networks are all the rage these days because of their superlative performance on 
high-profile tasks involving large-scale semi-structured datasets (image classification, speech 
recognition, natural language processing, bioinformatics, etc.), which is their domain of competence. 
The hypothesis space of neural networks includes functions that are compositions of compositions of 
compositions of simple functions known as neurons. The best way to understand the hypothesis space is 
graphically as layers of neurons, represented as nodes, connected to each other by weighted edges. There 
are three types of layers: an input layer, possibly several hidden layers, and an output layer. The basic 
picture to keep in mind is shown in Figure 7.13. The term deep learning which is bandied about quite a 
bit these days refers to deep neural networks: architectures of neurons with many many hidden layers.  

 
Figure 7.13. Diagram of a neural network. Accessible caption. Three nodes on the left form the input 
layer. They are labeled 𝑥(1), 𝑥(2), and  𝑥(3). To the right of the input layer is hidden layer 1 with four 
nodes. To the right of hidden layer 1 is hidden layer 2 with four hidden nodes. To the right of hidden 
layer 2 is one node labeled 𝑦̂ constituting the output layer. There are edges between each node of one 
layer and each node of the adjacent layer. Each edge has a weight. Each hidden node sums all of its in-
puts and applies an activation function. The output node sums all of its inputs and applies a hard 
threshold. 

Logistic regression is actually a very simple neural network with just an input layer and an output 
node, so let’s start there. The input layer is simply a set of nodes, one for each of the 𝑑 feature dimensions 
𝑥(1), … , 𝑥(𝑑) relevant for predicting the expertise of employees. They have weighted edges coming out of 
them, going into the output node. The weights on the edges are the coefficients in 𝑤, i.e. 𝑤(1), … , 𝑤(𝑑). The 
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output node sums the weighted inputs, so computes 𝑤𝑇𝑥, and then passes the sum through the step 
function. This overall procedure is exactly the same as logistic regression described earlier, but 
described in a graphical way. 

In the regular case of a neural network with one or more hidden layers, nodes in the hidden layers 
also start with a weighted summation. However, instead of following the summation with an abrupt step 
function, hidden layer nodes use softer, more gently changing activation functions. A few different 
activation functions are used in practice, whose choice contributes to the inductive bias. Two examples, 
the sigmoid or logistic activation function 1/(1 + 𝑒−𝑧) and the rectified linear unit (ReLU) activation 
function max{ 0, 𝑧}, are shown in Figure 7.14. The ReLU activation is typically used in all hidden layers of 
deep neural networks because it has favorable properties for optimization techniques that involve the 
gradient of the activation function. 

  
Figure 7.14. Activation functions. Accessible caption. A plot with activation function on the vertical axis 
and input on the horizontal axis. The sigmoid function is a gently rolling S-shaped curve that equals 0.5 
at input value 0, approaches 0 as the input goes to negative infinity, and approaches 1 as the input goes 
to positive infinity. The ReLU function is 0 for all negative inputs and increases linearly starting at 0. 

When there are several hidden layers, the outputs of nodes in one hidden layer feed into the nodes 
of the next hidden layer. Thus, the neural network’s computation is a sequence of compositions of 
weighted sum, activation function, weighted sum, activation function, and so on until reaching the 
output layer, which finally applies the step function. The number of nodes per hidden layer and the 
number of hidden layers is a design choice for JCN Corporation’s data scientists to make. 

You and your team have analyzed the hypothesis space. Cool beans. The next thing for you to analyze 
is the loss function of neural networks. Recall that margin-based loss functions multiply the true label 
𝑦𝑗 by the distance 𝑤𝑇𝑥𝑗 (not by the predicted label 𝑦̂(𝑥𝑗)), before applying the step function. The cross-
entropy loss, the most common loss function used in neural networks, does kind of the same thing. It 
compares the true label 𝑦𝑗 to a soft prediction 𝜑(𝑥𝑗) in the range [0,1] computed in the output node before 
the step function has been applied to it. The cross-entropy loss function is: 

𝐿 (𝑦𝑗 , 𝜑(𝑥𝑗)) = − (𝑦𝑗 log (𝜑(𝑥𝑗)) + (1 − 𝑦𝑗) log (1 − 𝜑(𝑥𝑗))). 

Equation 7.5 
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The form of the expression comes from cross-entropy, the average information in the true label 
random variable 𝑦 when described using the predicted distance random variable 𝜑, introduced in 
Chapter 3. Cross-entropy should be minimized because you want the description in terms of the 
prediction to be matched to the ground truth. It turns out that the cross-entropy loss is equivalent to the 
margin-based logistic loss function in binary classification problems, but it is pretty involved to show it 
mathematically because the margin-based loss function is a function of one variable that multiplies the 
prediction and the true label, whereas the two arguments are kept separate in cross-entropy loss.11 

The last question to ask is about regularization. Although ℓ1-norm, ℓ2-norm, or other penalties can 
be added to the cross-entropy loss, the most common way to regularize neural networks is dropout. The 
idea is to randomly remove some nodes from the network on each iteration of an optimization procedure 
during training. Dropout’s goal is somewhat similar to bagging, but instead of creating an ensemble of 
several neural networks explicitly, dropout makes each iteration appear like a different neural network 
of an ensemble, which helps diversity and generalization. An example neural network classifier with 
one hidden layer and ReLU activation functions is shown in Figure 7.15. Repeating the statement from 
the beginning of this section, the domain of competence for artificial neural networks is semi-structured 
datasets with a large number of data points. 

 
Figure 7.15. Example neural network classifier. Accessible caption. Stylized plot showing two classes of 
data points arranged in a noisy yin yang or interleaving moons configuration. The decision boundary is 
mostly smooth and composed of two almost straight diagonal segments that form a slightly bent elbow 
in the middle of the two moons. 

7.5.4 Conclusion 
You have worked your way through several different kinds of classifiers to compare and contrast their 
domains of competence and evaluate their appropriateness for your expertise assessment prediction 
task. Your dataset consists of mostly structured data, is of moderate size, and has a lot of feature axis-
aligned separations between employees skilled and unskilled at serverless architecture. For these 

 

 
11Tyler Sypherd, Mario Diaz, Lalitha Sankar, and Peter Kairouz. “A Tunable Loss Function for Binary Classification.” In: Pro-
ceedings of the IEEE International Symposium on Information Theory. Paris, France, Jul. 2019, pp. 2479–2483.  
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reasons, you can expect that XGBoost will be a competent classifier for your problem. But you should 
nevertheless do some amount of empirical testing of a few different methods. 

 

7.6 Summary 
▪ There are many different methods for finding decision functions from a finite number of training 

samples, each with their own inductive biases for how they generalize. 

▪ Different classifiers have different domains of competence: what kinds of datasets they have 
lower generalization error on than other methods. 

▪ Parametric and non-parametric plug-in methods (discriminant analysis, naïve Bayes, k-nearest 
neighbor) and risk minimization methods (decision trees and forests, margin-based methods, 
neural networks) all have a role to play in practical machine learning problems.  

▪ It is important to analyze their inductive biases and domains of competence not only to select the 
most appropriate method for a given problem, but also to be prepared to extend them for 
fairness, robustness, explainability, and other elements of trustworthiness. 
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8  
Causal Modeling 

In cities throughout the United States, the difficulty of escaping poverty is exacerbated by the difficulty 
in obtaining social services such as job training, mental health care, financial education classes, legal 
advice, child care support, and emergency food assistance. They are offered by different agencies in 
disparate locations with different eligibility requirements. It is difficult for poor individuals to navigate 
this perplexity and avail themselves of services that they are entitled to. To counteract this situation, the 
(fictional) integrated social service provider ABC Center takes a holistic approach by housing many 
individual social services in one place and having a centralized staff of social workers guide their clients. 
To better advise clients on how to advance themselves in various aspects of life, the center’s director 
and executive staff would like to analyze the data that the center collects on the services used by clients 
and the life outcomes they achieved. As problem owners, they do not know what sort of data modeling 
they should do. Imagine that you are a data scientist collaborating with the ABC Center problem owners 
to analyze the situation and suggest appropriate problem specifications, understand and prepare the 
data available, and finally perform modeling. (This chapter covers a large part of the machine learning 
lifecycle whereas other chapters so far have mostly focused on smaller parts.) 

Your first instinct may be to suggest that ABC Center take a machine learning approach that predicts 
life outcomes (education, housing, employment, etc.) from a set of features that includes classes taken 
and sessions attended. Examining the associations and correlations in the resulting trained model may 
yield some insights, but misses something very important. Do you know what it is? It’s causality! If you 
use a standard machine learning formulation of the problem, you can’t say that taking an automobile 
repair training class causes an increase in the wages of the ABC Center client. When you want to 
understand the effect of interventions (specific actions that are undertaken) on outcomes, you have to do 
more than machine learning, you have to perform causal modeling.1 Cause and effect are central to 
understanding the world, but standard supervised learning is not a method for obtaining them.  

 

 
1Ruocheng Guo, Lu Cheng, Jundong Li, P. Richard Hahn, and Huan Liu. “A Survey of Learning Causality from Data: Problems 
and Methods.” In: ACM Computing Surveys 53.4 (Jul. 2020), p. 75.  
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Toward the goal of suggesting problem formulations to ABC Center, understanding the relevant data, 
and creating models for them, in this chapter you will: 

▪ distinguish a situation as requiring a causal model or a typical predictive machine learning 
model,  

▪ discover the graph structure of causal relations among all random variables in a system, and  

▪ compute the quantitative causal effect of an intervention on an outcome, including from 
observational data. 

 

8.1 Contrasting Causal Modeling and Predictive Modeling 
If an ABC Center client completes a one-on-one counseling session, it may cause a change in their level 
of anxiety. In contrast, completing the sessions does not cause an increase in, say, the price of eggs even 
if the price of eggs suddenly jumps the day after every client’s counseling session as the price is 
unrelated to ABC Center. In addition, two different things can cause the same result: both counseling 
sessions and an increase in wages can cause a reduction in anxiety. You can also be fooled by the 
common cause fallacy: a client secures stable housing and then purchases a used car. The stable housing 
does not cause the car purchase, but both are caused by a wage increase. 

But what is this elusive notion called causality? It is not the same as correlation, the ability to predict, 
or even statistical dependence. Remember how we broke down the meanings of trustworthiness and safety 
into smaller components (in Chapter 1 and Chapter 3, respectively)? Unfortunately, we cannot do the 
same for causality since it is an elementary concept that cannot be broken down further. The basic 
definition of causality is: if doing something makes something else happen, then the something we did is 
a cause of the something that happened. The key word in the statement is do. Causation requires doing. 
The actions that are done are known as interventions or treatments. Interventions can be done by people 
or by nature; the focus in this chapter is on interventions done consciously by people. 

“While probabilities encode our beliefs about a static world, causality tells us 
whether and how probabilities change when the world changes, be it by intervention 
or by act of imagination.” 

—Judea Pearl, computer scientist at University of California, Los Angeles 

8.1.1 Structural Causal Models 
A causal model is a quantitative attempt at capturing notions of causality among random variables that 
builds upon probability theory. Structural causal models are one key approach for causal modeling. They 
contain two parts: a causal graph (a graphical model like the Bayesian networks we went over in Chapter 
3) and structural equations. As shown in Figure 8.1, the graph for both counseling sessions and a change 
in wages causing  a change in anxiety is made up of three nodes arranged in a common effect motif: 
counseling → anxiety  wages. The graph for increased wages causing stable housing and car purchase 
is also made up of three nodes, but arranged in the common cause motif: housing  wages → car. The 
graph in the figure puts both subgraphs together along with another common cause: having access to 
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child care causing both wages and stable housing. (If a client has child care, they can more easily search 
for jobs and places to live since they don’t have to take their child around with them.) 

 
Figure 8.1. An example causal graph of how the clients of ABC Center respond to interventions and life changes. 
Accessible caption. A graph with six nodes: counseling sessions, anxiety, wages, child care, used car, 
and stable housing. There are edges from counseling sessions to anxiety, anxiety to wages, wages to 
used car, wages to stable housing, and child care to both wages and stable housing. 

Nodes represent random variables in structural causal models just as they do in Bayesian networks. 
However, edges don’t just represent statistical dependencies, they also represent causal relationships. 
A directed edge from random variable 𝑇 (e.g. counseling sessions) to 𝑌 (e.g. anxiety) indicates a causal 
effect of 𝑇 (counseling sessions) on 𝑌 (anxiety). Since structural causal models are a generalization of 
Bayesian networks, the Bayesian network calculations for representing probabilities in factored form 
and for determining conditional independence through d-separation continue to hold. However, 
structural causal models capture something more than the statistical relationships because of the 
structural equations.  

Structural equations, also known as functional models, tell you what happens when you do something. 
Doing or intervening is the act of forcing a random variable to take a certain value. Importantly, it is not 
just passively observing what happens to all the random variables when the value of one of them has 
been revealed—that is simply a conditional probability. Structural causal modeling requires a new 
operator 𝑑𝑜(∙), which indicates an intervention. The interventional distribution 𝑃( 𝑌 ∣∣ 𝑑𝑜(𝑡) ) is the 
distribution of the random variable 𝑌 when the random variable 𝑇 is forced to take value 𝑡. For a causal 
graph with only two nodes 𝑇 (counseling session) and 𝑌 (anxiety) with a directed edge from 𝑇 to 𝑌, 𝑇 → 
𝑌, the structural equation takes the functional form: 

𝑃( 𝑌 ∣∣ 𝑑𝑜(𝑡) ) =  𝑓𝑌(𝑡, 𝑛𝑜𝑖𝑠𝑒𝑌), 

Equation 8.1 
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where 𝑛𝑜𝑖𝑠𝑒𝑌 is some noise or randomness in 𝑌 and 𝑓𝑌 is any function. There is an exact equation relating 
an intervention on counseling sessions, like starting counseling sessions (changing the variable from 0 
to 1), to the probability of a client’s anxiety. The key point is that the probability can truly be expressed 
as an equation with the treatment as an argument on the right-hand side. Functional models for 
variables with more parents would have those parents as arguments in the function 𝑓𝑌, for example 
𝑃( 𝑌 ∣∣ 𝑑𝑜(𝑡) ) =  𝑓𝑌(𝑡1, 𝑡2, 𝑡3, 𝑛𝑜𝑖𝑠𝑒𝑌) if 𝑌 has three parents. (Remember from Chapter 3 that directed edges 
begin at parent nodes and end at child nodes.)  

8.1.2 Causal Model vs. Predictive Model 
How do you tell that a problem is asking for a causal model rather than a predictive model that would 
come from standard supervised machine learning? The key is identifying whether something is actively 
changing one or more of the features. The act of classifying borrowers as good bets for a loan does not 
change anything about the borrowers at the time, and thus calls for a predictive model (also known as 
an associational model) as used by ThriveGuild in Chapter 3 and Chapter 6. However, wanting to 
understand if providing job training to a client of ABC Center (actively changing the value of a feature on 
job preparedness) results in a change to their probability of being approved by ThriveGuild is a causal 
modeling question.  

Using predictive models to form causal conclusions can lead to great harms. Changes to input 
features of predictive models do not necessarily lead to desired changes of output labels. All hell can 
break loose if a decision maker is expecting a certain input change to lead to a certain output change, 
but the output simply does not change or changes in the opposite direction. Because ABC Center wants 
to model what happens to clients upon receiving social services, you should suggest to the director that 
the problem specification be focused on causal models to understand the center’s set of interventions 
(various social services) and outcomes that measure how well a client is progressing out of poverty. 

An important point is that even if a model is only going to be used for prediction, and not for making 
decisions to change inputs, causal models help sidestep issues introduced in Chapter 4—construct 
validity (the data really measures with it should), internal validity (no errors in data processing), and 
external validity (generalization to other settings)—because it forces the predictions to be based on real, 
salient phenomena rather than spurious phenomena that just happen to exist in a given dataset. For this 
reason, causality is an integral component of trustworthy machine learning, and comes up in Part 4 of 
the book that deals with reliability. Settling for predictive models is a shortcut when just a little more 
effort to pursue causal models would make a world of difference. 

8.1.3 Two Problem Formulations 
There are two main problem formulations in causal modeling for ABC Center to consider in the problem 
specification phase of the development lifecycle. The first is obtaining the structure of the causal graph, 
which will allow them to understand which services yield effects on which outcomes. The second 
problem formulation is obtaining a number that quantifies the causal effect between a given treatment 
variable 𝑇 (maybe it is completing the automobile repair class) and a given outcome label 𝑌 (maybe it is 
wages). This problem is described further in Section 8.2.  

Proceeding to the data understanding and data preparation phases of the lifecycle, there are two 
types of data, interventional data and observational data, that may come up in causal modeling. They are 
detailed in Section 8.3. Very briefly, interventional data comes from a purposefully designed experiment 
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and observational data does not. Causal modeling with interventional data is usually straightforward 
and causal modeling with observational data is much more involved.  

In the modeling phase when dealing with observational data, the two problem formulations 
correspond to two different categories of methods. Causal discovery is to learn the structural causal model. 
Causal inference is to estimate the causal effect. Specific methods for conducting causal discovery and 
causal inference from observational data are the topic of Sections 8.4 and 8.5, respectively. A mental 
model of the modeling methods for the two formulations is given in Figure 8.2. 

 
Figure 8.2. Classes of methods for causal modeling from observational data. Accessible caption. A hierarchy 
diagram with causal modeling from observational data at its root with children causal discovery and 
causal inference. Causal discovery has children conditional independence-based methods and func-
tional model-based methods. Causal inference has children treatment models and outcome models. 

 

8.2 Quantifying a Causal Effect 
The second problem specification is computing the average treatment effect. For simplicity, let’s focus on 
𝑇 being a binary variable taking values in {0,1}: either a client doesn’t get the automobile repair class or 
they do. Then the average treatment effect 𝜏 is: 

𝜏 = 𝐸[ 𝑌 ∣ 𝑑𝑜(𝑡 = 1) ]– 𝐸[ 𝑌 ∣ 𝑑𝑜(𝑡 = 0) ]. 

Equation 8.2 

This difference of the expected value of the outcome label under the two values of the intervention 
precisely shows how the outcome changes due to the treatment. How much do wages change because of 
the automobile repair class? The terminology contains average because of the expected value. 
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For example, if 𝑌 ∣ 𝑑𝑜(𝑡 = 0) is a Gaussian random variable with mean 13 dollars per hour and 
standard deviation 1 dollar per hour,2 and 𝑌 ∣ 𝑑𝑜(𝑡 = 1) is a Gaussian random variable with mean 
18 dollars per hour and standard deviation 2 dollars per hour, then the average treatment effect is 18 −

13 = 5 dollars per hour. Being trained in automobile repair increases the earning potential of clients by 
5 dollars per hour. The standard deviation doesn’t matter here. 

 
Figure 8.3. Motifs that block and do not block paths between the treatment node 𝑇 and the outcome label node 𝑌. 
Backdoor paths are not blocked. Accessible caption. If an entire path is made up of causal chains without 
observation (𝑋1 → 𝑋3 → 𝑋2), it is not a backdoor path. Backdoor paths begin with an edge coming into 
the treatment node and can contain common causes without observation (𝑋1  𝑋3 → 𝑋2;  𝑋3 is a con-
founding variable) and common effects with observation (𝑋1 → 𝑋3  𝑋2; the underline indicates that 𝑋3 
or any of its descendants is observed). In this case, 𝑋3 in the common cause without observation is a 
confounding variable. The other three motifs—causal chain with observation (𝑋1 → 𝑋3 → 𝑋2), common 
cause with observation (𝑋1  𝑋3 → 𝑋2), and common effect without observation (𝑋1 → 𝑋3  𝑋2)—are 
blockers. If any of them exist along the way from the treatment to the outcome label, there is no open 
backdoor path. 

 

 
2The pdf of a Gaussian random variable 𝑋 with mean 𝜇 and standard deviation 𝜎 is 𝑝𝑋(𝑥) =
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. Its expected value is 𝜇. 
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8.2.1 Backdoor Paths and Confounders 
It is important to note that the definition of the average treatment effect is conditioned on 𝑑𝑜(𝑡), not on 
𝑡, and that 𝑃( 𝑌 ∣∣ 𝑑𝑜(𝑡) ) and 𝑃( 𝑌 ∣ 𝑡 ) are generally not the same. Specifically, they are not the same when 
there is a so-called backdoor path between 𝑇 and 𝑌. Remember that a path is a sequence of steps along 
edges in the graph, irrespective of their direction. A backdoor path is any path from 𝑇 to 𝑌 that (1) starts 
with an edge going into 𝑇 and (2) is not blocked. The reason for the name ‘backdoor’ is because the first 
edge goes backwards into 𝑇. (Frontdoor paths have the first edge coming out of T.) Recall from Chapter 
3 that a path is blocked if it contains:  

1. a causal chain motif with the middle node observed, i.e. the middle node is conditioned upon, 

2. a common cause motif with the middle node observed, or 

3. a common effect motif with the middle node not observed (this is a collider)  

anywhere between 𝑇 and 𝑌. Backdoor paths can contain (1) the common cause without observation motif 
and (2) the common effect with observation motif between 𝑇 and 𝑌. The motifs that block and do not 
block a path are illustrated in Figure 8.3. 

 The lack of equality between the interventional distribution 𝑃( 𝑌 ∣∣ 𝑑𝑜(𝑡) ) and the associational 
distribution 𝑃( 𝑌 ∣ 𝑡 ) is known as confounding bias.3 Any middle nodes of common cause motifs along a 
backdoor path are confounding variables or confounders. Confounding is the central challenge to be 
overcome when you are trying to infer the average treatment effect in situations where intervening is 
not possible (you cannot 𝑑𝑜(𝑡)). Section 8.5 covers how to mitigate confounding while estimating the 
average treatment effect. 

8.2.2 An Example 
Figure 8.4 shows an example of using ABC Center’s causal graph (introduced in Figure 8.1) while 
quantifying a causal effect. The center wants to test whether reducing a client’s high anxiety to low 
anxiety affects their stable housing status. There is a backdoor path from anxiety to stable housing going 
through wages and child care. The path begins with an arrow going into anxiety. A common cause 
without observation, wages  child care → stable housing, is the only other motif along the path to stable 
housing. It does not block the path. Child care, as the middle node of a common cause, is a confounding 
variable. If you can do the treatment, that is intervene on anxiety, which is represented 
diagrammatically with a hammer, the incoming edges to anxiety from counseling sessions and wages 
are removed. Now there is no backdoor path anymore, and you can proceed with the treatment effect 
quantification.  

Often, however, you cannot do the treatment. These are observational rather than interventional 
settings. The observational setting is a completely different scenario than the interventional setting. 
Figure 8.5 shows how things play out. Since you cannot make the edge between anxiety and wages go 
away through intervention, you have to include the confounding variable of whether the client has child 
care or not in your model, and only then will you be able to do a proper causal effect quantification 
between anxiety and stable housing. Including, observing, or conditioning upon confounding variables 

 

 
3There can be confounding bias without a backdoor path in special cases involving selection bias. Selection bias is when the 
treatment variable and another variable are common causes for the outcome label. 
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is known as adjusting for them. Adjusting for wages rather than child care is an alternative way to block 
the backdoor path in the ABC Center graph. 

 

 
Figure 8.4. The scenario of causal effect quantification when you can intervene on the treatment. Accessible 
caption. The causal graph of Figure 8.1 is marked with anxiety as the treatment and stable housing as 
the outcome. A backdoor path is drawn between the two passing through wages and child care, which 
is marked as a confounder. Intervening on anxiety is marked with a hammer. Its effect is the removal 
of edges into anxiety from counseling sessions and wages, and the removal of the backdoor path. 
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Figure 8.5. The scenario of causal effect quantification when you cannot intervene on the treatment and thus 
have to adjust for a variable along a backdoor path. Accessible caption. The causal graph of Figure 8.1 is 
marked with anxiety as the treatment and stable housing as the outcome. A backdoor path is drawn 
between the two passing through wages and child care, which is marked as a confounder. Adjusting for 
child care colors its node gray and removes the backdoor path. 

At the end of the day, the whole point of computing causal effects is to inform decision making. If 
there are two competing social services that ABC Center can offer a client, causal models should 
recommend the one with the largest effect on the outcome that they care about. In the next sections, you 
will proceed to find models for this task from data. 

 

8.3 Interventional Data and Observational Data 
You have worked with the director of ABC Center on the problem specification phase and decided on a 
causal modeling approach rather than a standard machine learning approach for giving insights on 
interventions for clients to achieve good life outcomes. You have also decided on the specific form of 
causal modeling: either obtaining the structural causal model or the average treatment effect. The next 
phases in the machine learning lifecycle are data understanding and data preparation. 

There are two types of data in causal modeling: interventional data and observational data, whose 
settings you have already been exposed to in the previous section. Interventional data is collected when 
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you actually do the treatment. It is data collected as part of an experiment that has already been thought 
out beforehand. An experiment that ABC Center might conduct to obtain interventional data is to enroll 
one group of clients in a financial education seminar and not enroll another group of clients. The group 
receiving the treatment of the financial education seminar is the treatment group and the group not 
receiving the seminar is the control group. ABC Center would collect data about those clients along many 
feature dimensions, and this would constitute the dataset to be modeled in the next phase of the 
lifecycle. It is important to collect data for all features that you think could possibly be confounders.  

As already seen in the previous sections and irrespective of whether collected interventionally or 
observationally, the random variables are: the treatment 𝑇 that designates the treatment and control 
groups (anxiety intervention), the outcome label 𝑌 (stable housing), and other features 𝑋 (child care and 
others). A collection of samples from these random variables constitute the dataset in average treatment 
effect estimation: {(𝑡1, 𝑥1, 𝑦1), … , (𝑡𝑛 , 𝑥𝑛 , 𝑦𝑛)}. An example of such a dataset is shown in Figure 8.6. In 
estimating a structural causal model, you just have random variables 𝑋 and designate a treatment and 
outcome label later if needed.  

 
Figure 8.6. A dataset for treatment effect estimation. The axes are two feature dimensions of 𝑥. The unfilled data 
points are the control group 𝑡 = 0 and the filled data points are the treatment group 𝑡 = 1. The diamond data 
points have the outcome label 𝑦 = 0 and the square data points have the outcome label 𝑦 = 1. 

The causal graph can be estimated from the entire data if the goal of ABC Center is to get a general 
understanding of all of the causal relationships. Alternatively, causal effects can be estimated from the 
treatment, confounding, and outcome label variables if the director wants to test a specific hypothesis 
such as anxiety reduction seminars having a causal effect on stable housing. A special kind of 
experiment, known as a randomized trial, randomly assigns clients to the treatment group and control 
group, thereby mitigating confounding within the population being studied.  

It is not possible to observe both the outcome label 𝑦 under the control 𝑡 = 0 and its counterfactual 𝑦 
under the treatment 𝑡 = 1 because the same individual cannot both receive and not receive the 
treatment at the same time. This is known as the fundamental problem of causal modeling. The fundamental 
problem of causal modeling is lessened by randomization because, on average, the treatment group and 
control group contain matching clients that almost look alike. Randomization does not prevent a lack of 
external validity however (recall from Chapter 4 that external validity is the ability of a dataset to 
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generalize to a different population). It is possible that some attribute of all clients in the population is 
commonly caused by some other variable that is different in other populations.  

Randomized trials are considered to be the gold standard in causal modeling that should be done if 
possible. Randomized trials and interventional data collection more broadly, however, are often 
prohibited by ethical or logistical reasons. For example, it is not ethical to withhold a treatment known 
to be beneficial such as a job training class to test a hypothesis. From a logistical perspective, ABC Center 
may not, for example, have the resources to give half its clients a $1000 cash transfer (similar to 
Unconditionally’s modus operandi in Chapter 4) to test the hypothesis that this intervention improves 
stable housing. Even without ethical or logistical barriers, it can also be the case that ABC Center’s 
director and executive staff think up a new cause-and-effect relationship they want to investigate after 
the data has already been collected. 

In all of these cases, you are in the setting of observational data rather than interventional data. In 
observational data, the treatment variable’s value has not been forced to a given value; it has just taken 
whatever value it happened to take, which could be dependent on all sorts of other variables and 
considerations. In addition, because observational data is often data of convenience that has not been 
purposefully collected, it might be missing a comprehensive set of possible confounding variables.  

The fundamental problem of causal modeling is very apparent in observational data and because of 
it, testing and validating causal models becomes challenging. The only (unsatisfying) ways to test causal 
models are (1) through simulated data that can produce both a factual and counterfactual data point, or 
(2) to collect an interventional dataset from a very similar population in parallel. Regardless, if all you 
have is observational data, all you can do is work with it in the modeling phase of the lifecycle. 

  

8.4 Causal Discovery Methods 
After the data understanding phase comes modeling. How do you obtain a causal graph structure for 
ABC Center like the one in Figure 8.1? There are three ways to proceed:4 

1. Enlist subject matter experts from ABC Center to draw out all the arrows (causal relationships) 
among all the nodes (random variables) manually, 

2. Design and conduct experiments to tease out causal relationships, or 

3. Discover the graph structure based on observational data. 

The first manual option is a good option, but it can lead to the inclusion of human biases and is not 
scalable to problems with a large number of variables, more than twenty or thirty. The second 
experimental option is also a good option, but is also not scalable to a large number of variables because 
interventional experiments would have to be conducted for every possible edge. The third option, known 
as causal discovery, is the most tractable in practice and what you should pursue with ABC Center.5  

You’ve probably heard the phrase “those who can, do; those who can’t, teach” which is shortened to 
“those who can’t do, teach.” In causal modeling from observational data when you can’t intervene, the 

 

 
4Clark Glymour, Kun Zhang, and Peter Spirtes. “Review of Causal Discovery Methods Based on Graphical Models.” In: Frontiers 
in Genetics 10 (Jun. 2019), p. 524.  
5There are advanced methods for causal discovery that start with observational data and tell you a few important experiments 
to conduct to get an even better graph, but they are beyond the scope of the book.  
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phrase to keep in mind is “those who can’t do, assume.” Causal discovery has two branches, shown back 
in Figure 8.2, each with a different assumption that you need to make. The first branch is based on 
conditional independence testing and relies on the faithfulness assumption. The main idea of faithfulness 
is that the conditional dependence and independence relationships among the random variables 
encode the causal relationships. There is no coincidental or deterministic relationship among the 
random variables that masks a causal relationship. The Bayesian network edges are the edges of the 
structural causal model. Faithfulness is usually true in practice. 

One probability distribution can be factored in many ways by choosing different sets of variables to 
condition on, which leads to different graphs. Arrows pointing in different directions also lead to 
different graphs. All of these different graphs arising from the same probability distribution are known 
as a Markov equivalence class. One especially informative example of a Markov equivalence class is the 
setting with just two random variables, say anxiety and wages.6 The graph with anxiety as the parent and 
wages as the child and the graph with wages as the parent and anxiety as the child lead to the same 
probability distribution, but with opposite cause-and-effect relationships. One important point about 
the conditional independence testing branch of causal discovery methods is that they find Markov 
equivalence classes of graph structures rather than finding single graph structures. 

The second branch of causal discovery is based on making assumptions on the form of the structural 
equations 𝑃( 𝑌 ∣∣ 𝑑𝑜(𝑡) ) =  𝑓𝑌(𝑡, 𝑛𝑜𝑖𝑠𝑒𝑌) introduced in Equation 8.1. Within this branch, there are several 
different varieties. For example, some varieties assume that the functional model has a linear function 
𝑓𝑌, others assume that the functional model has a nonlinear function 𝑓𝑌 with additive noise 𝑛𝑜𝑖𝑠𝑒𝑌, and 
even others assume that the probability distribution of the noise 𝑛𝑜𝑖𝑠𝑒𝑌 has small entropy. Based on the 
assumed functional form, a best fit to the observational data is made. The assumptions in this branch 
are much stronger than in conditional independence testing, but lead to single graphs as the solution 
rather than Markov equivalence classes. These characteristics are summarized in Table 8.1. 

Table 8.1. Characteristics of the two branches of causal discovery methods. 

Branch Faithfulness  
Assumption 

Assumption on 
Functional Model 

Markov Equiva-
lence Class Output 

Single Graph 
Output 

conditional  
independence 

X  X  

functional 
model 

 X  X 

 
In the remainder of this section, you’ll see an example of each branch of causal discovery in action: 

the PC algorithm for conditional independence testing-based methods and the additive noise model-
based approach for functional model-based methods.  

 

 
6Matthew Ridley, Gautam Rao, Frank Schilbach, and Vikram Patel. “Poverty, Depression, and Anxiety: Causal Evidence and 
Mechanisms.” In: Science 370.6522 (Dec. 2020), p. 1289. 
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8.4.1 An Example Conditional Independence Testing-Based Method 
One of the oldest, simplest, and still often-used conditional independence testing-based causal 
discovery methods is the PC algorithm. Named for its originators, Peter Spirtes and Clark Glymour, the 
PC algorithm is a greedy algorithm. An ABC Center example of the PC algorithm is presented in Figure 
8.7 for the nodes of wages, child care, stable housing, and used car. The steps are as follows: 

0. The overall PC algorithm starts with a complete undirected graph with edges between all pairs 
of nodes. 

1. As a first step, the algorithm tests every pair of nodes; if they are independent, it deletes the 
edge between them. Next it continues to test conditional independence for every pair of nodes 
conditioning on larger and larger subsets, deleting the edge between the pair of nodes if any 
conditional independence is found. The end result is the undirected skeleton of the causal 
graph.  

The reason for this first step is as follows. There is an undirected edge between nodes 𝑋1 and 𝑋2 
if and only if 𝑋1 and 𝑋2 are dependent conditioned on every possible subset of all other nodes. 
(So if a graph has three other nodes 𝑋3, 𝑋4, and 𝑋5, then you’re looking for 𝑋1 and 𝑋2 to be (1) un-
conditionally dependent given no other variables, (2) dependent given 𝑋3, (3) dependent given 
𝑋4, (4) dependent given 𝑋5, (5) dependent given 𝑋3, 𝑋4, (6) dependent given 𝑋3, 𝑋5, (7) dependent 
given 𝑋4, 𝑋5, and (8) dependent given 𝑋3, 𝑋4, 𝑋5.) These conditional dependencies can be figured 
out using d-separation, which was introduced back in Chapter 3.  

2. The second step puts arrowheads on as many edges as it can. The algorithm conducts condi-
tional independence tests between the first and third nodes of three-node chains. If they’re de-
pendent conditioned on some set of nodes containing the middle node, then a common cause 
(collider) motif with arrows is created. The end result is a partially-oriented causal graph. The 
direction of edges that the algorithm cannot figure out remain unknown. All choices of all of 
those orientations give you the different graphs that make up the Markov equivalence class. 

The reason for the second step is that an undirected chain of nodes 𝑋1, 𝑋2, and 𝑋3 can be made 
directed into 𝑋1 → 𝑋2  𝑋3 if and only if 𝑋1 and 𝑋3 are dependent conditioned on every possible 
subset of nodes containing 𝑋2. These conditional dependencies can also be figured out using d-
separation. 

At the end of the example in Figure 8.7, the Markov equivalence class contains four possible graphs. 
In Chapter 3, d-separation was presented in the ideal case when you know the dependence and 

independence of each pair of random variables perfectly well. But when dealing with data, you don’t 
have that perfect knowledge. The specific computation you do on data to test for conditional 
independence between random variables is often based on an estimate of the mutual information 
between them. This seemingly straightforward problem of conditional independence testing among 
continuous random variables has a lot of tricks of the trade that continue to be researched and are 
beyond the scope of this book.7 

 

 
7Rajat Sen, Ananda Theertha Suresh, Karthikeyan Shanmugam, Alexandros G. Dimakis, and Sanjay Shakkottai. “Model-Pow-
ered Conditional Independence Test.” In: Advances in Neural Information Processing Systems 31 (Dec. 2017), pp. 2955–2965. 
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Figure 8.7. An example of the steps of the PC algorithm. Accessible caption. In step 0, there is a fully con-
nected undirected graph with the nodes child care, wages, stable housing, and used car. In step 1, the 
edges between child care and used car, and between stable housing and used car have been removed 
because they exhibit conditional independence. The undirected skeleton is left. In step 2, the edge be-
tween child care and stable housing is oriented to point from child care to stable housing, and the edge 
between wages and stable housing is oriented to point from wages to stable housing. The edges be-
tween child care and wages and between wages and used car remain undirected. This is the partially-
oriented graph. There are four possible directed graphs which constitute the Markov equivalence class 
solution: with edges pointing from child care to wages and used car to wages,  with edges pointing from 
child care to wages and wages to used car, with edges pointing from wages to child care and from used 
care to wages, and with edges poiting from wages to child care and wages to used car. 

8.4.2 An Example Functional Model-Based Method 
In the conditional independence test-based methods, no strong assumption is made on the functional 
form of 𝑃( 𝑌 ∣∣ 𝑑𝑜(𝑡) ) =  𝑓𝑌(𝑡, 𝑛𝑜𝑖𝑠𝑒𝑌). Thus, as you’ve seen with the PC algorithm, there can remain 
confusion on the direction of some of the edges. You can’t tell which one of two nodes is the cause and 
which one is the effect. Functional model-based methods do make an assumption on 𝑓𝑌 and are designed 
to avoid this confusion. They are best understood in the case of just two nodes, say 𝑇 and 𝑌, or wages and 
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anxiety. You might think that a change in wages causes a change in anxiety (𝑇 causes 𝑌), but it could be 
the other way around (𝑌 causes 𝑇).  

One specific method in this functional model-based branch of causal discovery methods is known 
as the additive noise model. It requires that 𝑓𝑌 not be a linear function and that the noise be additive:  
𝑃( 𝑌 ∣∣ 𝑑𝑜(𝑡) ) =  𝑓𝑌(𝑡) + 𝑛𝑜𝑖𝑠𝑒𝑌; here 𝑛𝑜𝑖𝑠𝑒𝑌 should not depend on 𝑡. The plot in Figure 8.8 shows an 
example nonlinear function along with a quantification of the noise surrounding the function. This noise 
band is equal in height around the function for all values of 𝑡 since the noise does not depend on 𝑡. Now 
look at what’s going on when 𝑡 is the vertical axis and 𝑦 is the horizontal axis. Is the noise band equal in 
height around the function for all values of 𝑦? It isn’t, and that’s the key observation. The noise has 
constant height around the function when the cause is the horizontal axis and it doesn’t when the effect 
is the horizontal axis. There are ways to test for this phenomenon from data, but if you understand this 
idea shown in Figure 8.8, you’re golden. If ABC Center wants to figure out whether a decrease in anxiety 
causes an increase in wages, or if an increase in wages causes a decrease in anxiety, you know what 
analysis to do. 

 
Figure 8.8. Example of using the additive noise model method to tell cause and effect apart. Since the height of 
the noise band is the same across all 𝑡 and different across all 𝑦, 𝑡 is the cause and 𝑦 is the effect. Accessible cap-
tion. Two plots of the same nonlinear function and noise bands around it. The first plot has 𝑦 on the 
vertical axis and 𝑡 on the horizontal axis; the second has 𝑡 on the vertical axis and 𝑦 on the horizontal 
axis. In the first plot, the height of the noise band is consistently the same for different values of 𝑡. In 
the second plot, the height of the noise band is consistently different for different values of 𝑦. 

This phenomenon does not happen when the function is linear. Try drawing Figure 8.8 for a linear 
function in your mind, and then flip it around as a thought experiment. You’ll see that the height of the 
noise is the same both ways and so you cannot tell cause and effect apart. 

 

8.5 Causal Inference Methods 
Based on Section 8.4, you have the tools to estimate the structure of the causal relations among random 
variables collected by ABC Center. But just knowing the relations is not enough for the director. He also 
wants to quantify the causal effects for a specific treatment and outcome label. Specifically, he wants to 
know what the effect of anxiety reduction is on stable housing. You now turn to average treatment effect 
estimation methods to try to answer the question. You are working with observational data because ABC 
Center has not run a controlled experiment to try to tease out this cause-and-effect relationship. From 
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Figure 8.5, you know that child care is a confounding variable, and because of proper foresight and not 
taking shortcuts, you have collected data on it. The 𝑡𝑖  values report those clients who received an anxiety 
reduction treatment, the 𝑥𝑖 values report data on clients’ child care situation and other possible 
confounders, and the 𝑦𝑖  values are the client’s outcome label on stable housing.  

Remember our working phrase: “those who can’t do, assume.” Just like in causal discovery, causal 
inference from observational data requires assumptions. A basic assumption in causal inference is 
similar to the independent and identically distributed (i.i.d.) assumption in machine learning, 
introduced in Chapter 3. This causal inference assumption, the stable unit treatment value assumption, 
simply says that the outcome of one client only depends on the treatment made to that client, and is not 
affected by treatments to other clients. There are two important assumptions:  

1. No unmeasured confounders also known as ignorability. The dataset needs to contain all the con-
founding variables within 𝑋.  

2. Overlap also known as positivity. The probability of the treatment 𝑇 given the confounding varia-
bles must be neither equal to 0 nor equal to 1. It must take a value strictly greater than 0 and 
strictly less than 1. This definition explains the name positivity because the probability has to 
be positive, not identically zero. Another perspective on the assumption is that the probability 
distribution of 𝑋 for the treatment group and the probability distribution of 𝑋 for the control 
group should overlap; there should not be any support for one of the two distributions where 
there isn’t support for the other. Overlap and the lack thereof is illustrated in Figure 8.9 using a 
couple of datasets. 

 
Figure 8.9. On the left, there is much overlap in the support of the treatment and control groups, so average 
treatment effect estimation is possible. On the right, there is little overlap, so average treatment effect estimation 
should not be pursued. Accessible caption. Plots with data points from the treatment group and control 
group overlaid with regions indicating the support of their underlying distributions. In the left plot, 
there is much overlap in the support and in the right plot, there isn’t. 

Both assumptions together go by the name strong ignorability. If the strong ignorability assumptions 
are not true, you should not conduct average treatment effect estimation from observational data. Why 
are these two assumptions needed and why are they important? If the data contains all the possible 
confounding variables, you can adjust for them to get rid of any confounding bias that may exist. If the 
data exhibits overlap, you can manipulate or balance the data to make it look like the control group and 
the treatment group are as similar as can be. 
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If you’ve just been given a cleaned and prepared version of ABC Center’s data to perform average 
treatment effect estimation on, what are your next steps? There are four tasks for you to do in an iterative 
manner, illustrated in Figure 8.10. The first task is to specify a causal method, choosing between (1) 
treatment models and (2) outcome models. These are the two main branches of conducting causal inference 
from observational data and were shown back in Figure 8.2. Their details are coming up in the next 
subsections. The second task in the iterative approach is to specify a machine learning method to be 
plugged in within the causal method you choose. Both types of causal methods, treatment models and 
outcome models, are based on machine learning under the hood. The third task is to train the model. 
The fourth and final task is to evaluate the assumptions to see whether the result can really be viewed 
as a causal effect.8 Let’s go ahead and run the four tasks for the ABC Center problem. 

 
Figure 8.10. The steps to follow while conducting average treatment effect estimation from observational data. 
Outside of this loop, you may also go back to the data preparation phase of the machine learning lifecycle if 
needed. Accessible caption. A flow diagram starting with specify causal method, leading to specify ma-
chine learning method, leading to train model, leading to evaluate assumptions. If assumptions are not 
met, flow back to specify causal method. If assumptions are met, return average treatment effect. 

8.5.1 Treatment Models 
The first option for you to consider for your causal method is treatment models. Before diving into 
treatment models, let’s define an important concept first: propensity score. It is the probability of the 
treatment (anxiety reduction intervention) conditioned on the possible confounding variables (child 
care and others), 𝑃( 𝑇 ∣ 𝑋 ). Ideally, the decision to give a client an anxiety reduction intervention is 
independent of anything else, including whether the client has child care. This is true in randomized 
trials, but tends not to be true in observational data. 

The goal of treatment models is to get rid of confounding bias by breaking the dependency between 
𝑇 and 𝑋. They do this by assigning weights to the data points so that they better resemble a randomized 
trial: on average, the clients in the control group and in the treatment group should be similar to each 
other in their confounding variables. The main idea of the most common method in this branch, inverse 

 

 
8Yishai Shimoni, Ehud Karavani, Sivan Ravid, Peter Bak, Tan Hung Ng, Sharon Hensley Alford, Denise Meade, and Ya’ara Gold-
schmidt. “An Evaluation Toolkit to Guide Model Selection and Cohort Definition in Causal Inference.” arXiv:1906.00442, 2019.  
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probability weighting, is to give more weight to clients in the treatment group that were much more likely 
to be assigned to the control group and vice versa. Clients given the anxiety reduction treatment 𝑡𝑗 = 1 
are given weight inversely proportional to their propensity score 𝑤𝑗 = 1/𝑃( 𝑇 = 1 ∣∣ 𝑋 = 𝑥𝑗 ). Clients not 
given the treatment 𝑡𝑗 = 0 are similarly weighted 𝑤𝑗 = 1/𝑃( 𝑇 = 0 ∣∣ 𝑋 = 𝑥𝑗 ) which also equals 1/ (1 −

𝑃( 𝑇 = 1 ∣∣ 𝑋 = 𝑥𝑗 )). The average treatment effect of anxiety reduction on stable housing is then simply 
the weighted mean difference of the outcome label between the treatment group and the control group. 
If you define the treatment group as 𝒯 = {𝑗 ∣ 𝑡𝑗 = 1} and the control group as 𝒞 = {𝑗 ∣ 𝑡𝑗 = 0}, then the 
average treatment effect estimate is  

𝜏 =
1

‖𝒯‖
∑ 𝑤𝑗

𝑗∈𝒯

𝑦𝑗 −
1

‖𝒞‖
∑ 𝑤𝑗

𝑗∈𝒞

𝑦𝑗 . 

Equation 8.3 

Getting the propensity score 𝑃( 𝑇 ∣ 𝑋 ) from training data samples {(𝑥1, 𝑡1), … , (𝑥𝑛 , 𝑡𝑛)} is a machine 
learning task with features 𝑥𝑗 and labels 𝑡𝑗  in which you want a (calibrated) continuous score as output 
(the score was called 𝑠(𝑥) in Chapter 6). The learning task can be done with any of the machine learning 
algorithms from Chapter 7. The domains of competence of the different choices of machine learning 
algorithms for estimating the propensity score are the same as for any other machine learning task, e.g. 
decision forests for structured datasets and neural networks for large semi-structured datasets. 

Once you’ve trained a propensity score model, the next step is to evaluate it to see whether it meets 
the assumptions for causal inference. (Just because you can compute an average treatment effect 
doesn’t mean that everything is hunky-dory and that your answer is actually the causal effect.) There 
are four main evaluations of a propensity score model: (1) covariate balancing, (2) calibration, (3) overlap 
of propensity distribution, and (4) area under the receiver operating characteristic (AUC). Calibration 
and AUC were introduced in Chapter 6 as ways to evaluate typical machine learning problems, but 
covariate balancing and overlap of propensity distribution are new here. Importantly, the use of AUC to 
evaluate propensity score models is different than its use to evaluate typical machine learning problems. 

Since the goal of inverse probability weighting is to make the potential confounding variables 𝑋 look 
alike in the treatment and control groups, the first evaluation, covariate balancing, tests whether that has 
been accomplished. This is done by computing the standardized mean difference (SMD) going one-by-
one through the 𝑋 features (child care and other possible confounders). Just subtract the mean value of 
the feature for the control group data from the mean value for the treatment group data, and divide by 
the square root of the average variance of the feature for the treatment and control groups. 
‘Standardized’ refers to the division at the end, which is done so that you don’t have to worry about the 
absolute scale of different features. An absolute value of SMD greater than about 0.1 for any feature 
should be a source of concern. If you see this happening, your propensity score model is not good and 
you shouldn’t draw causal conclusions from the average treatment effect. 

The second evaluation is calibration. Since the propensity score model is used as an actual 
probability in inverse probability weighting, it has to have good calibration to be effective. Introduced in 
Chapter 6, the calibration loss needs to be small and the calibration curve needs to be as much of a 
straight line as possible. If they aren’t, you shouldn’t draw causal conclusions from the average 
treatment effect you compute and need to go back to step 1. 
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The third evaluation is based on the distributions of the propensity score for the treatment group 
and the control group, illustrated in Figure 8.11. Spikes in the distribution near 0 or 1 are bad because 
they indicate a possible large set of 𝑋 values that can be almost perfectly  classified by the propensity 
score model. Perfect classification means that there is almost no overlap of the treatment group and 
control group in that region, which is not desired to meet the positivity assumption. If you see such 
spikes, you should not proceed with this model. (This evaluation doesn’t tell you what the non-overlap 
region is, but just that it exists.) 

 

Figure 8.11. Example propensity score distributions; the one on the left indicates a possible overlap violation, 
whereas the one on the right does not. Accessible caption. Plots with density on the vertical axis and pro-
pensity score on the horizontal axis. Each plot overlays a control pdf and a treatment pdf. The pdfs in 
the left plot do not overlap much and the control group distribution has a spike near 0. The pdfs in the 
right plot are almost completely on top of each other. 

The fourth evaluation of a treatment model is the AUC. Although its definition and computation are 
the same as in Chapter 6, good values of the AUC of a propensity score model are not near the perfect 
1.0. Intermediate values of the AUC, like 0.7 or 0.8, are just right for average treatment effect estimation. 
A poor AUC of nearly 0.5 remains bad for a propensity score model. If the AUC is too high or too low, do 
not proceed with this model. Once you’ve done all the diagnostic evaluations and none of them raise an 
alert, you should proceed with reporting the average treatment effect that you have computed as an 
actual causal insight. Otherwise, you have to go back and specify different causal methods and/or 
machine learning methods. 

8.5.2 Outcome Models 
The other branch of methods you should consider for the causal model in testing whether ABC Center’s 
anxiety reduction intervention has an effect on stable housing is outcome models. In treatment models, 
you use the data {(𝑡1, 𝑥1), … , (𝑡𝑛 , 𝑥𝑛)} to learn the 𝑃( 𝑇 ∣ 𝑋 = 𝑥 ) relationship, but you do something different 
in outcome models. In this branch, you use the data {(𝑡1, 𝑥1, 𝑦1), … , (𝑡𝑛 , 𝑥𝑛 , 𝑦𝑛)} to learn the relationships 
𝐸[ 𝑌 ∣ 𝑇 = 1, 𝑋 = 𝑥 ] and 𝐸[ 𝑌 ∣ 𝑇 = 0, 𝑋 = 𝑥 ]. You’re directly predicting the average outcome label of stable 
housing from the possible confounding variables such as child care along with the anxiety reduction 
treatment variable. Strong ignorability is required in both treatment models and outcome models. 
Before moving on to the details of outcome models, the difference between treatment models and 
outcome models is summarized in Table 8.2. 
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Table 8.2. Characteristics of the two branches of causal inference methods. 

Branch Dataset What Is 
Learned 

Purpose  

treatment models {(𝑡1, 𝑥1), … , (𝑡𝑛 , 𝑥𝑛)} 𝑃( 𝑇 ∣ 𝑋 ) use to weight the data points 
outcome models 
 

{(𝑡1, 𝑥1, 𝑦1), … , (𝑡𝑛 , 𝑥𝑛 , 𝑦𝑛)} 𝐸[ 𝑌 ∣ 𝑇, 𝑋 ] use directly for average treat-
ment estimation 

 
Why is learning 𝐸[ 𝑌 ∣ 𝑇, 𝑋 ] models from data useful? How do you get the average treatment effect of 

anxiety reduction on stable housing from them? Remember that the definition of the average treatment 
effect is 𝜏 = 𝐸[ 𝑌 ∣ 𝑑𝑜(𝑡 = 1) ] − 𝐸[ 𝑌 ∣ 𝑑𝑜(𝑡 = 0) ]. Also, remember that when there is no confounding, the 
associational distribution and interventional distribution are equal, so 𝐸[ 𝑌 ∣ 𝑑𝑜(𝑡) ] = 𝐸[ 𝑌 ∣ 𝑇 = 𝑡 ]. Once 
you have 𝐸[ 𝑌 ∣ 𝑇 = 𝑡, 𝑋 ], you can use something known as the law of iterated expectations to adjust for 𝑋 
and get 𝐸[ 𝑌 ∣ 𝑇 = 𝑡 ]. The trick is to take an expectation over 𝑋 because 𝐸𝑋[𝐸𝑌[ 𝑌 ∣ 𝑇 = 𝑡, 𝑋 ]] =

𝐸𝑌[ 𝑌 ∣ 𝑇 = 𝑡 ]. (The subscripts on the expectations tell you which random variable you’re taking the 
expectation with respect to.) To take the expectation over 𝑋, you sum the outcome model over all the 
values of 𝑋 weighted by the probabilities of each of those values of 𝑋. It is clear sailing after that to get 
the average treatment effect because you can compute the difference 𝐸[ 𝑌 ∣ 𝑇 = 1 ] − 𝐸[ 𝑌 ∣ 𝑇 = 0 ] 
directly.  

You have the causal model; now on to the machine learning model. When the outcome label 𝑌 takes 
binary values 0 and 1 corresponding the absence and presence of stable housing, then the expected 
values are equivalent to the probabilities 𝑃( 𝑌 ∣ 𝑇 = 1, 𝑋 = 𝑥 ) and 𝑃( 𝑌 ∣ 𝑇 = 0, 𝑋 = 𝑥 ). Learning these 
probabilities is a job for a calibrated machine learning classifier with continuous score output trained 
on labels 𝑦𝑖  and features (𝑡𝑗 , 𝑥𝑗). You can use any machine learning method from Chapter 7 with the same 
guidelines for domains of competence. Traditionally, it has been common practice to use linear margin-
based methods for the classifier, but nonlinear methods should be tried especially for high-dimensional 
data with lots of possible confounding variables. 

Just like with treatment models, being able to compute an average treatment effect using outcome 
models does not automatically mean that your result is a causal inference. You still have to evaluate. A 
first evaluation, which is also an evaluation for treatment models, is calibration. You want small 
calibration loss and a straight line calibration curve. A second evaluation for outcome models is 
accuracy, for example measured using AUC. With outcome models, just like with regular machine 
learning models but different from treatment models, you want the AUC to be as large as possible 
approaching 1.0. If the AUC is too small, do not proceed with this model and go back to step 1 in the 
iterative approach to average treatment effect estimation illustrated in Figure 8.10. 

A third evaluation for outcome models examines the predictions they produce to evaluate 
ignorability or no unmeasured confounders. The predicted 𝑌 ∣ 𝑡 = 1 and 𝑌 ∣ 𝑡 = 0 values coming out of 
the outcome models should be similar for clients who were actually part of the treatment group (received 
the anxiety reduction intervention) and clients who were part of the control group (did not receive the 
anxiety reduction intervention). If the predictions are not similar, there is still some confounding left 
over after adjusting for 𝑋 (child care and other variables), which means that the assumption of no 
unmeasured confounders is violated. Thus, if the predicted 𝑌 ∣ 𝑡 = 1 and 𝑌 ∣ 𝑡 = 0  values for the two 
groups do not mostly overlap, then do not proceed and go back to the choice of causal model and 
machine learning model.   
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8.5.3 Conclusion 
You’ve evaluated two options for causal inference: treatment models and outcome models. Which option 
is better in what circumstances? Treatment and outcome modeling are inherently different problems 
with different features and labels. You can just end up having better evaluations for one causal method 
than the other using the different machine learning method options available. So just try both branches 
and see how well the results correspond. Some will be better matched to the relevant modeling tasks, 
depending on the domains of competence of the machine learning methods under the hood. 

But do you know what? You’re in luck and don’t have to choose between the two branches of causal 
inference. There’s a hybrid approach called doubly-robust estimation in which the propensity score 
values are added as an additional feature in the outcome model.9 Doubly-robust models give you the best 
of both worlds! ABC Center’s director is waiting to decide whether he should invest more in anxiety 
reduction interventions. Once you’re done with your causal modeling analysis, he’ll be able to make an 
informed decision. 

 

8.6 Summary 
▪ Causality is a fundamental concept that expresses how changing one thing (the cause) results in 

another thing changing (the effect). It is different than correlation, predictability, and 
dependence. 

▪ Causal models are critical to inform decisions involving interventions and treatments with 
expected effects on outcomes. Predictive associational models are not sufficient when you are 
‘doing’ something to an input. 

▪ In addition to informing decisions, causal modeling is a way to avoid harmful spurious 
relationships in predictive models. 

▪ Structural causal models extend Bayesian networks by encoding causal relationships in addition 
to statistical relationships. Their graph structure allows you to understand what causes what, as 
well as chains of causation, among many variables. Learning their graph structure is known as 
causal discovery. 

▪ Causal inference between a hypothesized pair of treatment and outcome is a different problem 
specification. To validly conduct causal inference from observational data, you must control for 
confounding. 

▪ Causal modeling requires assumptions that are difficult to validate, but there is a set of 
evaluations you should perform as part of modeling to do the best that you can. 

 

 
9Miguel A. Hernán and James M. Robins. Causal Inference: What If. Boca Raton, Florida, USA: Chapman & Hall/CRC, 2020.  
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9  
Distribution Shift 

Wavetel is a leading (fictional) mobile telephony provider in India that expanded its operations to several 
East and Central African countries in recent years. One of its profit centers in the African markets is 
credit enabled by mobile money that it runs through partnerships with banks in each of the nations. The 
most straightforward application of mobile money is savings, first started in Kenya in 2007 under the 
name M-Pesa. With mobile money savings, customers can deposit, withdraw, and transfer funds 
electronically without a formal bank account, all through their mobile phones. (Remember that these 
transactions are one of the data sources that Unconditionally evaluated in Chapter 4.) More advanced 
financial services such as credit and insurance later emerged. In these advanced services, the bank 
takes on financial risk and can’t just hand out accounts without an application process and some amount 
of due diligence.  

Having seen how profitable mobile money-enabled credit can be, Wavetel strongly lobbied for it to 
be allowed in its home country of India and has just seen the regulations signed into law. Partnering with 
the (fictional) Bank of Bulandshahr, Wavetel is ready to deploy this new service under the name Phulo. 
Based on market research, Wavetel and the Bank of Bulandshahr expect Phulo to receive tens of 
thousands of applications per day when first launched. They have to be ready to approve or deny those 
applications in near real-time. To deal with this load, imagine that they have hired your data science 
team as consultants to create a machine learning model that makes the decisions.  

The task you face, approving and denying mobile phone-enabled loans for unbanked customers in 
India has never been done before. The Bank of Bulandshahr’s historical loan approval data will not be 
useful for making decisions on Phulo applicants. However, Wavetel has privacy-preserved data from 
mobile money-enabled credit systems in several East and Central African countries that it has the rights 
and consent to use in its India operations. Can you train the Phulo machine learning model using the 
African datasets? What could go wrong?  

If you’re not careful, there’s a lot that could go wrong. You could end up creating a really harmful and 
unreliable system, because of the big lie of machine learning: the core assumption that training data and 
testing data is independent and identically distributed (i.i.d.). This is almost never true in the real world, 
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where there tends to be some sort of difference in the probability distributions of the training data and 
the data encountered during the model’s deployment. This difference in distributions is known as 
distribution shift. A competent model that achieves high accuracy when tested through cross-validation 
might not maintain that competence in the real world. Too much epistemic uncertainty sinks the ship 
of even a highly risk-minimizing model. 

“All bets are off if there is a distribution shift when the model is deployed. (There's 
always a distribution shift.)” 

—Arvind Narayanan, computer scientist at Princeton University 

This chapter begins Part 4 of the book on reliability and dealing with epistemic uncertainty, which 
constitutes the second of four attributes of trustworthiness (the others are basic performance, human 
interaction, and aligned purpose) as well as the second of two attributes of safety (the first is minimizing 
risk and aleatoric uncertainty). As shown in Figure 9.1, you’re halfway home to creating trustworthy 
machine learning systems! 

 
Figure 9.1. Organization of the book. This fourth part focuses on the second attribute of trustworthiness, reliabil-
ity, which maps to machine learning models that are robust to epistemic uncertainty. Accessible caption. A flow 
diagram from left to right with six boxes: part 1: introduction and preliminaries; part 2: data; part 3: 
basic modeling; part 4: reliability; part 5: interaction; part 6: purpose. Part 4 is highlighted. Parts 3–4 
are labeled as attributes of safety. Parts 3–6 are labeled as attributes of trustworthiness. 

In this chapter, while working through the modeling phase of the machine learning lifecycle to create 
a safe and reliable Phulo model, you will: 

▪ examine how epistemic uncertainty leads to poor machine learning models, both with and 
without distribution shift, 

▪ judge which kind of distribution shift you have, and 

▪ mitigate the effects of distribution shift in your model. 

 

9.1 Epistemic Uncertainty in Machine Learning 
You have the mobile money-enabled credit approval/denial datasets from East and Central African 
countries and want to train a reliable Phulo model for India. You know that for safety, you must worry 
about minimizing epistemic uncertainty: the possibility of unexpected harms. Chapter 3 taught you how 
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to differentiate aleatoric uncertainty from epistemic uncertainty. Now’s the time to apply what you 
learned and figure out where epistemic uncertainty is rearing its head! 

First, in Figure 9.2, let’s expand on the picture of the different biases and validities from Figure 4.3 
to add a modeling step that takes you from the prepared data space to a prediction space where the 
output predictions of the model live. As you learned in Chapter 7, in modeling, you’re trying to get the 
classifier to generalize from the training data to the entire set of features by using an inductive bias, 
without overfitting or underfitting. Working backwards from the prediction space, the modeling process 
is the first place where epistemic uncertainty creeps in. Specifically, if you don’t have the information to 
select a good inductive bias and hypothesis space, but you could obtain it in principle, then you have 
epistemic uncertainty.1 Moreover, if you don’t have enough high-quality data to train the classifier even 
if you have the perfect hypothesis space, you have epistemic uncertainty. 

 
Figure 9.2. Different spaces and what can go wrong due to epistemic uncertainty throughout the machine learn-
ing pipeline. Accessible caption. A sequence of five spaces, each represented as a cloud. The construct 
space leads to the observed space via the measurement process. The observed space leads to the raw 
data space via the sampling process. The raw data space leads to the prepared data space via the data 
preparation process. The prepared data space leads to the prediction space via the modeling process. 
The measurement process contains social bias, which threatens construct validity. The sampling pro-
cess contains representation bias and temporal bias, which threatens external validity. The data prep-
aration process contains data preparation bias and data poisoning, which threaten internal validity. 
The modeling process contains underfitting/overfitting and poor inductive bias, which threaten gener-
alization. 

The epistemic uncertainty in the model has a few different names, including the Rashomon effect2 and 
underspecification.3 The main idea, illustrated in Figure 9.3, is that a lot of models perform similarly well 

 

 
1Eyke Hüllermeier and Willem Waegeman. “Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Con-
cepts and Methods.” In: Machine Learning 110.3 (Mar. 2021), pp. 457–506.   
2Aaron Fisher, Cynthia Rudin, and Francesca Dominici. “All Models Are Wrong, but Many Are Useful: Learning a Variable’s 
Importance by Studying an Entire Class of Prediction Models Simultaneosly.” In: Journal of Machine Learning Research 20.177 
(Dec. 2019). Rashomon is the title of a film in which different witnesses give different descriptions of the same event. 
3Alexander D’Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel, Christina Chen, Jonathan 
Deaton, Jacob Eisenstein, Matthew D. Hoffman, Farhad Hormozdiari, Neil Houlsby, Shaobo Hou, Ghassen Jerfel, Alan 
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in terms of aleatoric uncertainty and risk, but have different ways of generalizing because you have not 
minimized epistemic uncertainty. They all have the possibility of being competent and reliable models. 
They have a possibility value of 1. (Other models that do not perform well have a possibility value of 0 of 
being competent and reliable models.) However, many of these possible models are unreliable and they 
take shortcuts by generalizing from spurious characteristics in the data that people would not naturally 
think are relevant features to generalize from.4 They are not causal. Suppose one of the African mobile 
money-enabled credit datasets just happens to have a spurious feature like the application being 
submitted on a Tuesday that predicts the credit approval label very well. In that case, a machine learning 
training algorithm will not know any better and will use it as a shortcut to fit the model. And you know 
that taking shortcuts is no-no for you when building trustworthy machine learning systems, so you don’t 
want to let your models take shortcuts either. 

 
Figure 9.3. Among all the models you are considering, many of them can perform well in terms of accuracy and 
related measures; they are competent and constitute the Rashomon set. However, due to underspecification and 
the epistemic uncertainty that is present, many of the competent models are not safe and reliable. Accessible 
caption. A nested set diagram with reliable models being a small subset of competent models 
(Rashomon set), which are in turn a small subset of models in the hypothesis space.  

How can you know that a competent high-accuracy model is one of the reliable, safe ones and not 
one of the unreliable, unsafe ones? The main way is to stress test it by feeding in data points that are 
edge cases beyond the support of the training data distribution. More detail about how to test machine 
learning systems in this way is covered in Chapter 13.  

The main way to reduce epistemic uncertainty in the modeling step that goes from the prepared data 
space to the prediction space is data augmentation. If you can, you should collect more data from more 
environments and conditions, but that is probably not possible in your Phulo prediction task. 

 

 
Karthikesalingam, Mario Lucic, Yian Ma, Cory McLean, Diana Mincu, Akinori Mitani, Andrea Montanari, Zachary Nado, Vivek 
Nataragan, Christopher Nielson, Thomas F. Osborne, Rajiv Raman, Kim Ramasamy, Rory Sayres, Jessica Schrouff, Mertin Sen-
eviratne, Shannon Sequeira, Harini Suresh, Victor Veitch, Max Vladymyrov, Xuezhi Wang, Kellie Webster, Steve Yadlowsky, 
Taedong Yun, Xiaohua Zhai, and D. Sculley. “Underspecification Presents Challenges for Credibility in Modern Machine Learn-
ing.” arXiv:2011.03395, 2020.  
4Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge, and Felix A. 
Wichmann. “Shortcut Learning in Deep Neural Networks.” In: Nature Machine Intelligence 2.11 (Nov. 2020), pp. 665–673.  
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Alternatively, you can augment your training dataset by synthetically generating training data points, 
especially those that push beyond the margins of the data distribution you have. Data augmentation can 
be done for semi-structured data modalities by flipping, rotating, and otherwise transforming the data 
points you have. In structured data modalities, like have with Phulo, you can create new data points by 
changing categorical values and adding noise to continuous values. However, be careful that you do not 
introduce any new biases in the data augmentation process. 

 

9.2 Distribution Shift is a Form of Epistemic Uncertainty 
So far, you’ve considered the epistemic uncertainty in going from the prepared data space to the 
prediction space by modeling, but there’s epistemic uncertainty earlier in the pipeline too. This 
epistemic uncertainty comes from all of the biases you don’t know about or don’t understand very well 
when going from the construct space to the prepared data space. We’ll come back to some of them in 
Chapter 10 and Chapter 11 when you learn how to make machine learning systems fair and adversarially 
robust. But for now, when building the Phulo model in India using data from several East and Central 
African countries, your most obvious source of epistemic uncertainty is sampling. You have sampled 
your data from a different time (temporal bias) and population (representation bias) than what Phulo is 
going to be deployed on. You might also have epistemic uncertainty in measurement: it is possible that 
the way creditworthiness shows up in India is different than in East and Central African countries 
because of cultural differences (social bias). Putting everything together, the distributions of the training 
data and the deployed data are not identical: 𝑝𝑋,𝑌

(𝑡𝑟𝑎𝑖𝑛)(𝑥, 𝑦) ≠ 𝑝𝑋,𝑌
(𝑑𝑒𝑝𝑙𝑜𝑦)

(𝑥, 𝑦). (Remember that 𝑋 is features 
and 𝑌 is labels.) You have distribution shift.  

9.2.1 The Different Types of Distribution Shift 
In building out the Phulo model, you know that the way you’ve measured and sampled the data in 
historical African contexts is mismatched with the situation in which Phulo will be deployed: present-
day India. What are the different ways in which the training data distribution 𝑝𝑋,𝑌

(𝑡𝑟𝑎𝑖𝑛)(𝑥, 𝑦) can be different 
from the deployment data distribution 𝑝𝑋,𝑌

(𝑑𝑒𝑝𝑙𝑜𝑦)
(𝑥, 𝑦)? There are three main ways. 

1. Prior probability shift, also known as label shift, is when the label distributions are different but 
the features given the labels are the same: 𝑝𝑌

(𝑡𝑟𝑎𝑖𝑛)(𝑦) ≠ 𝑝𝑌
(𝑑𝑒𝑝𝑙𝑜𝑦)

(𝑦)5 and 𝑝𝑋∣𝑌
(𝑡𝑟𝑎𝑖𝑛)( 𝑥 ∣∣ 𝑦 ) =

𝑝𝑋∣𝑌
(𝑑𝑒𝑝𝑙𝑜𝑦)

( 𝑥 ∣∣ 𝑦 ). 

2. Covariate shift is the opposite, when the feature distributions are different but the labels given 
the features are the same: 𝑝𝑋

(𝑡𝑟𝑎𝑖𝑛)(𝑥) ≠ 𝑝𝑋
(𝑑𝑒𝑝𝑙𝑜𝑦)

(𝑥) and 𝑝𝑌∣𝑋
(𝑡𝑟𝑎𝑖𝑛)( 𝑦 ∣∣ 𝑥 ) = 𝑝𝑌∣𝑋

(𝑑𝑒𝑝𝑙𝑜𝑦)
( 𝑦 ∣∣ 𝑥 ).  

3. Concept drift is when the labels given the features are different but the features are the same: 
𝑝𝑌∣𝑋

(𝑡𝑟𝑎𝑖𝑛)( 𝑦 ∣∣ 𝑥 ) ≠ 𝑝𝑌∣𝑋
(𝑑𝑒𝑝𝑙𝑜𝑦)

( 𝑦 ∣∣ 𝑥 ) and 𝑝𝑋
(𝑡𝑟𝑎𝑖𝑛)(𝑥) = 𝑝𝑋

(𝑑𝑒𝑝𝑙𝑜𝑦)
(𝑥), or when the features given the labels 

are different but the labels are the same: 𝑝𝑋∣𝑌
(𝑡𝑟𝑎𝑖𝑛)( 𝑥 ∣∣ 𝑦 ) ≠ 𝑝𝑋∣𝑌

(𝑑𝑒𝑝𝑙𝑜𝑦)
( 𝑥 ∣∣ 𝑦 ) and 𝑝𝑌

(𝑡𝑟𝑎𝑖𝑛)(𝑦) =

𝑝𝑌
(𝑑𝑒𝑝𝑙𝑜𝑦)

(𝑦). 

All other distribution shifts do not have special names like these three types. The first two types of 
distribution shift come from sampling differences whereas the third type of distribution shift comes 

 

 
5You can also write this as 𝑝0

(𝑡𝑟𝑎𝑖𝑛)
≠ 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦).   
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from measurement differences. The three different types of distribution shift are summarized in Table 
9.1. 

Table 9.1. The three types of distribution shift. 

Type What 
Changes 

What is 
the Same 

Source Threatens Learning Problem 

prior probabil-
ity shift 

𝑌 𝑋 ∣ 𝑌 sampling external  
validity 

anticausal  
learning 

covariate shift 𝑋 𝑌 ∣ 𝑋 sampling external  
validity 

causal learning 

concept drift 𝑌 ∣ 𝑋 𝑋 measure-
ment 

construct  
validity 

causal learning 
𝑋 ∣ 𝑌 𝑌 anticausal  

learning 
 
Let’s go through an example of each type to see which one (or more than one) affects the Phulo 

situation. There will be prior probability shift if there are different proportions of creditworthy people in 
present-day India and historical African countries, maybe because of differences in the overall 
economy. There will be covariate shift if the distribution of features is different. For example, maybe 
people in India have more assets in gold than in East and Central African countries. There will be concept 
drift if the actual mechanism connecting the features and creditworthiness is different. For example, 
people in India who talk or SMS with many people may be more creditworthy while in East and Central 
Africa, people who talk or SMS with few people may be more creditworthy.  

One way to describe the different types of distribution shifts is through the context or environment. 
What does changing the environment in which the data was measured and sampled do to the features 
and label? And if you’re talking about doing, you’re talking about causality. If you treat the environment 
as a random variable 𝐸, then the different types of distribution shifts have the causal graphs shown in 
Figure 9.4.6 

 
Figure 9.4. Causal graph representations of the different types of distribution shift. Accessible caption. Graphs 
of prior probability shift (𝐸 → 𝑌 → 𝑋), covariate shift (𝐸 → 𝑋 → 𝑌), concept drift (𝐸 → 𝑌  𝑋), and con-
cept drift (𝐸 → 𝑋  𝑌). 

 

 
6Meelis Kull and Peter Flach. “Patterns of Dataset Shift.” In: Proceedings of the International Workshop on Learning over Multiple 
Contexts. Nancy, France, Sep. 2014.  
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These graphs illustrate a nuanced point. When you have prior probability shift, the label causes the 
feature and when you have covariate shift, the features cause the label. This is weird to think about, so 
let’s slow down and work through this concept. In the first case, 𝑌 → 𝑋, the label is known as an intrinsic 
label and the machine learning problem is known as anticausal learning. A prototypical example is a 
disease with a known pathogen like malaria that causes specific symptoms like chills, fatigue, and fever. 
The label of a patient having a disease is intrinsic because it is a basic property of the infected patient, 
which then causes the observed features. In the second case, 𝑋 → 𝑌, the label is known as an extrinsic 
label and the machine learning problem is known as causal learning. A prototypical example of this case 
is a syndrome, a collection of symptoms such as Asperger’s that isn’t tied to a pathogen. The label is just 
a label to describe the symptoms like compulsive behavior and poor coordination; it doesn’t cause the 
symptoms. The two different versions of concept drift correspond to anticausal and causal learning, 
respectively. Normally, in the practice of doing supervised machine learning, the distinction between 
anticausal and causal learning is just a curiosity, but it becomes important when figuring out what to do 
to mitigate the effect of distribution shift. It is not obvious which situation you’re in with the Phulo model, 
and you’ll have to really think about it. 

9.2.2 Detecting Distribution Shift 
Given that your training data is from East and Central African countries and your deployment data will 
come from India, you are aware that distribution shift probably exists in your modeling task. But how do 
you definitively detect it? There are two main ways: 

1. data distribution-based shift detection, and 

2. classifier performance-based shift detection, 

that are applicable at two different points of the machine learning modeling pipeline, show in Figure 
9.5.7 Data distribution-based shift detection is done on the training data before the model training. 
Classifier performance-based shift detection is done afterwards on the model. Data distribution-based 
shift detection, as its name implies, directly compares 𝑝𝑋,𝑌

(𝑡𝑟𝑎𝑖𝑛)(𝑥, 𝑦) and 𝑝𝑋,𝑌
(𝑑𝑒𝑝𝑙𝑜𝑦)

(𝑥, 𝑦) to see if they are 
similar or different. A common way is to compute their K-L divergence, which was introduced in Chapter 
3. If it is too high, then there is distribution shift. Classifier performance-based shift detection examines 
the Bayes risk, accuracy, 𝐹1-score, or other model performance measure. If it is much poorer than the 
performance during cross-validation, there is distribution shift. 

That is all well and good, but did you notice something about the two methods of distribution shift 
detection that make them unusable for your Phulo development task? They require the deployed 
distribution: both its features and labels. But you don’t have it! If you did, you would have used it to train 
the Phulo model. Shift detection methods are really meant for monitoring scenarios in which you keep 
getting data points to classify over time and you keep getting ground truth labels soon thereafter.  

 

 

 
7Jie Lu, Anjin Liu, Fan Dong, Feng Gu, João Gama, and Guangquan Zhang. “Learning Under Concept Drift: A Review.” In: IEEE 
Transactions on Knowledge and Data Engineering 31.12 (Dec. 2019), pp. 2346–2363. 
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Figure 9.5. Modeling pipeline for detecting and mitigating distribution shift. Accessible caption. A block dia-
gram with a training dataset as input to a pre-processing block labeled adaptation with a pre-pro-
cessed dataset as output. The pre-processed dataset is input to a model training block labeled robust-
ness with a model as output. A data distribution-based shift detection block is applied to the training 
dataset. A classifier performance-based shift detection block is applied to the model. 

If you’ve started to collect unlabeled feature data from India, you can do unsupervised data 
distribution-based shift detection by comparing the India feature distribution to the Africa feature 
distributions. But you kind of already know that they’ll be different, and this unsupervised approach will 
not permit you to determine which type of distribution shift you have. Thus, in a Phulo-like scenario, 
you just have to assume the existence and type of distribution shift based on your knowledge of the 
problem. (Remember our phrase from Chapter 8: “those who can’t do, assume.”) 

9.2.3 Mitigating Distribution Shift 
There are two different scenarios when trying to overcome distribution shift to create a safe and 
trustworthy machine learning model: (1) you have unlabeled feature data 𝑋(𝑑𝑒𝑝𝑙𝑜𝑦) from the deployment 
distribution, which will let you adapt your model to the deployment environment, and (2) you have 
absolutely no data from the deployment distribution, so you must make the model robust to any 
deployment distribution you might end up encountering.  

“Machine learning systems need to robustly model the range of situations that occur 
in the real-world.” 

—Drago Anguelov, computer scientist at Waymo 

The two approaches take place in different parts of the modeling pipeline shown in Figure 9.5. 
Adaptation is done on the training data as a pre-processing step, whereas robustness is introduced as 
part of the model training process. The two kinds of mitigation are summarized in Table 9.2. 

Table 9.2. The two types of distribution shift mitigation. 

Type Where in the 
Pipeline 

Known Deployment 
Environment 

Approach for Prior Proba-
bility and Covariate Shifts 

Approach for 
Concept Drift 

adaptation pre- 
processing 

yes sample weights  obtain labels 

robustness model training no min-max formulation invariant risk 
minimization 
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The next sections work through adaptation and robustness for the different types of distribution 

shift. Mitigating prior probability shift and covariate shift is easier than mitigating concept drift because 
the relationship between the features and labels does not change in the first two types. Thus, the 
classifier you learned on the historical African training data continues to capture that relationship even 
on India deployment data; it just needs a little bit of tuning.  

 

9.3 Adaptation 
The first mitigation approach, adaptation, is done as a pre-processing of the training data from East and 
Central African countries using information available in unlabeled feature data 𝑋(𝑑𝑒𝑝𝑙𝑜𝑦) from India. To 
perform adaptation, you must know that India is where you’ll be deploying the model and you must be 
able to gather some features. 

9.3.1 Prior Probability Shift 
Since prior probability shift arises from sampling bias, the relationship between features and labels, and 
thus the ROC, does not change. Adapting is simply a matter of adjusting the classifier threshold or 
operating point based on the confusion matrix, which are all concepts you learned in Chapter 6. A 
straightforward and effective way to adapt to prior probability shift is a weighting scheme. The algorithm 
is as follows.8 

1. Train a classifier on one random split of the training data to get 𝑦̂(𝑡𝑟𝑎𝑖𝑛)(𝑥) and compute the clas-
sifier’s confusion matrix on another random split of the training data: 
 𝐶 = [

𝑝𝑇𝑃 𝑝𝐹𝑃

𝑝𝐹𝑁 𝑝𝑇𝑁
]. 

2. Run the unlabeled features of the deployment data through the classifier: 𝑦̂(𝑡𝑟𝑎𝑖𝑛)(𝑋(𝑑𝑒𝑝𝑙𝑜𝑦)) and 
compute the probabilities of positives and negatives in the deployment data as a vector: 

𝑎 =  [
𝑃(𝑦̂(𝑡𝑟𝑎𝑖𝑛)(𝑋(𝑑𝑒𝑝𝑙𝑜𝑦)) = 1)

𝑃(𝑦̂(𝑡𝑟𝑎𝑖𝑛)(𝑋(𝑑𝑒𝑝𝑙𝑜𝑦)) = 0)
]. 

3. Compute weights 𝑤 = 𝐶−1𝑎. This is a vector of length two. 

4. Apply the weights to the training data points in the first random split and retrain the classifier. 
The first of the two weights multiplies the loss function of the training data points with label 1. 
The second of the two weights multiplies the loss function of the training data points with label 
0.  

The retrained classifier is what you want to use when you deploy Phulo in India under the assumption 
of prior probability shift. 

 

 
8Zachary C. Lipton, Yu-Xiang Wang, and Alexander J. Smola. “Detecting and Correcting for Label Shift with Black Box Predic-
tors.” In: Proceedings of the International Conference on Machine Learning. Stockholm, Sweden, Jul. 2018, pp. 3122–3130. 
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9.3.2 Covariate Shift 
Just like adapting to prior probability shift, adapting to covariate shift uses a weighting technique called 
importance weighting to overcome the sampling bias. In an empirical risk minimization or structural risk 
minimization setup, a weight 𝑤𝑗 multiplies the loss function for data point (𝑥𝑗 , 𝑦𝑗):  

𝑦̂(∙) = arg min
𝑓∈ℱ

1

𝑛
∑ 𝑤𝑗𝐿 (𝑦𝑗 , 𝑓(𝑥𝑗)) .

𝑛

𝑗=1

 

Equation 9.1 

(Compare this to Equation 7.3, which is the same thing, but without the weights.) The importance weight 
is the ratio of the probability density of the features 𝑥𝑗 under the deployment distribution and the 
training distribution: 𝑤𝑗 = 𝑝𝑋

(𝑑𝑒𝑝𝑙𝑜𝑦)
(𝑥𝑗)/𝑝𝑋

(𝑡𝑟𝑎𝑖𝑛)
(𝑥𝑗).9 The weighting scheme tries to make the African 

features look more like the Indian features by emphasizing those that are less likely in East and Central 
African countries but more likely in India.  

How do you compute the weight from the training and deployment datasets? You could first try to 
estimate the two pdfs separately and then evaluate them at each training data point and plug them into 
the ratio. But that usually doesn’t work well. The better way to go is to directly estimate the weight. 

“When solving a problem of interest, do not solve a more general problem as an 
intermediate step.” 

—Vladimir Vapnik, computer scientist at AT&T Bell Labs 

The most straightforward technique is similar to computing propensity scores in Chapter 8. You learn a 
classifier with a calibrated continuous score 𝑠(𝑥) such as logistic regression or any other classifier from 
Chapter 7. The dataset to train this classifier is a concatenation of the deployment and training datasets. 
The labels are 1 for the data points that come from the deployment dataset and the labels are 0 for the 
data points that come from the training dataset. The features are the features. Once you have the 
continuous output of the classifier as a score, the importance weight is:10  

𝑤𝑗 =
𝑛(𝑡𝑟𝑎𝑖𝑛)𝑠(𝑥𝑗)

𝑛(𝑑𝑒𝑝𝑙𝑜𝑦) (1 − 𝑠(𝑥𝑗))
, 

Equation 9.2 

where 𝑛(𝑡𝑟𝑎𝑖𝑛) and 𝑛(𝑑𝑒𝑝𝑙𝑜𝑦) are the number of data points in the training and deployment datasets, 
respectively. 

 

 
9Hidetoshi Shimodaira. “Improving Predictive Inference Under Covariate Shift by Weighting the Log-Likelihood Function.” In: 
Journal of Statistical Planning and Inference 90.2 (Oct. 2000), pp. 227–244.  
10Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density Ratio Estimation in Machine Learning. Cambridge, England, 
UK: Cambridge University Press, 2012.  
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9.3.3 Concept Drift 
Adapting to prior probability shift and covariate shift can be done without labels from the deployment 
data because they come from sampling bias in which the relationship between features and labels does 
not change. However, the same thing is not possible under concept drift because it comes from 
measurement bias: the relationship between features and labels changing from African countries to 
India. To adapt to concept drift, you must be very judicious in selecting unlabeled deployment data 
points to (expensively) get labels for. It could mean having a human expert in India look at some 
applications and provide judgement on whether to approve or deny the mobile money-enabled credit. 
There are various criteria for choosing points for such annotation. Once you’ve gotten the annotations, 
retrain the classifier on the newly labeled data from India (possibly with large weight) along with the 
older training data from East and Central African countries (possibly with small weight). 
 

9.4 Robustness 
Often, you do not have any data from the deployment environment, so adaptation is out of the question. 
You might not even know what the deployment environment is going to be. It might not even end up 
being India for all that you know. Robustness does not require you to have any deployment data. It 
modifies the learning objective and procedure. 

9.4.1 Prior Probability Shift 
If you don’t have any data from the deployment environment (India), you want to make your model 
robust to whatever prior probabilities of creditworthiness there could be. Consider a situation in which 
the deployment prior probabilities in India are actually 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦) and 𝑝1
(𝑑𝑒𝑝𝑙𝑜𝑦)

= (1 − 𝑝0
(𝑑𝑒𝑝𝑙𝑜𝑦)

), but you 
guess that they are 𝑝0

(𝑡𝑟𝑎𝑖𝑛) and (1 − 𝑝0
(𝑡𝑟𝑎𝑖𝑛)

), maybe by looking at the prior probabilities in the different 
African countries. Your guess is probably a little bit off. If you use the decision function corresponding 
to your guess with the likelihood ratio test threshold 𝑝0

(𝑡𝑟𝑎𝑖𝑛)
𝑐10

(1−𝑝0
(𝑡𝑟𝑎𝑖𝑛)

)𝑐01

 (recall this was the form of the optimal 
threshold stated in Chapter 6), it has the following mismatched Bayes risk performance:11 

𝑅(𝑝0
(𝑑𝑒𝑝𝑙𝑜𝑦)

, 𝑝0
(𝑡𝑟𝑎𝑖𝑛)

) = 𝑐10𝑝0
(𝑑𝑒𝑝𝑙𝑜𝑦)

𝑝𝐹𝑃(𝑝0
(𝑡𝑟𝑎𝑖𝑛)

) + 𝑐01𝑝1
(𝑑𝑒𝑝𝑙𝑜𝑦)

𝑝𝐹𝑁(𝑝0
(𝑡𝑟𝑎𝑖𝑛)

). 

Equation 9.3 

You lose out on performance. Your epistemic uncertainty in knowing the right prior probabilities has 
hurt the Bayes risk.  

To be robust to the uncertain prior probabilities in present-day India, choose a value for 𝑝0
(𝑡𝑟𝑎𝑖𝑛) so 

that the worst-case performance is as good as possible. Known as a min-max formulation, the problem 
is to find a min-max optimal prior probability point that you’re going to use when you deploy the Phulo 
model. Specifically, you want: 

 

 
11In Equation 6.10, 𝑅 = 𝑐10𝑝0𝑝𝐹𝑃 + 𝑐01𝑝1𝑝𝐹𝑁, the dependence of 𝑝FP and 𝑝FN on 𝑝0 was not explicitly noted, but this dependence 
exists through the Bayes optimal threshold. 
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arg min
𝑝0

(𝑡𝑟𝑎𝑖𝑛)
max

𝑝0
(𝑑𝑒𝑝𝑙𝑜𝑦)

𝑅 (𝑝0
(𝑑𝑒𝑝𝑙𝑜𝑦)

, 𝑝0
(𝑡𝑟𝑎𝑖𝑛)

). 

Equation 9.4  

Normally in the book, we stop at the posing of the formulation. In this instance, however, since the 
min-max optimal solution has nice geometric properties, let’s carry on. The mismatched Bayes risk 
function 𝑅(𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦)
, 𝑝0

(𝑡𝑟𝑎𝑖𝑛)
) is a linear function of 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦) for a fixed value of 𝑝0
(𝑡𝑟𝑎𝑖𝑛). When 𝑝0

(𝑡𝑟𝑎𝑖𝑛)
=

𝑝0
(𝑑𝑒𝑝𝑙𝑜𝑦), the Bayes optimal threshold is recovered and 𝑅(𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦)
, 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦)
) is the optimal Bayes risk 𝑅 

defined in Chapter 6. It is a concave function that is zero at the endpoints of the interval [0,1].12 The linear 
mismatched Bayes risk function is tangent to the optimal Bayes risk function at 𝑝0

(𝑡𝑟𝑎𝑖𝑛)
= 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦) and 
greater than it everywhere else.13 This relationship is shown in Figure 9.6.  

 
Figure 9.6. An example mismatched (dashed line) and matched Bayes risk function (solid curve). Accessible 
caption. A plot with 𝑅(𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦)
, 𝑝0

(𝑡𝑟𝑎𝑖𝑛)
) on the vertical axis and 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦) on the horizontal axis. The 
matched Bayes risk is 0 at 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦)
= 0, increases to a peak in the middle and decreases back to 0 at 

𝑝0
(𝑑𝑒𝑝𝑙𝑜𝑦)

= 1. Its shape is concave. The mismatched Bayes risk is a line tangent to the matched Bayes 
risk at the point 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦)
= 𝑝0

(𝑡𝑟𝑎𝑖𝑛), which in this example is at a point greater than the peak of the 
matched Bayes risk. There’s a large gap between the matched and mismatched Bayes risk, especially 
towards 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦)
= 0. 

The solution is the prior probability value at which the matched Bayes risk function has zero slope. 
It turns out that the correct answer is the place where the mismatched Bayes risk tangent line is flat—at 
the top of the hump as shown in Figure 9.7. Once you have it, use it in the threshold of the Phulo decision 
function to deal with prior probability shift. 

 

 
12This is true under the ongoing assumption that the costs of correct classifications 𝑐00 = 0 and 𝑐11 = 0. 
13Kush R. Varshney. “Bayes Risk Error is a Bregman Divergence.” In: IEEE Transactions on Signal Processing 59.9 (Sep. 2011), pp. 
4470–4472.  
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Figure 9.7. The most robust prior probability to use in the decision function place is where the matched Bayes risk 
function is maximum. Accessible caption. A plot with 𝑅(𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦)
, 𝑝0

(𝑡𝑟𝑎𝑖𝑛)
) on the vertical axis and 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦) 
on the horizontal axis. The matched Bayes risk is 0 at 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦)
= 0, increases to a peak in the middle 

and decreases back to 0 at 𝑝0
(𝑑𝑒𝑝𝑙𝑜𝑦)

= 1. Its shape is concave. The mismatched Bayes risk is a horizontal 
line tangent to the matched Bayes risk at the optimal point 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦)
= 𝑝0

(𝑡𝑟𝑎𝑖𝑛), which is at the peak of the 
matched Bayes risk. The maximum gap between the matched and mismatched Bayes risk is as small 
as can be. 

9.4.2 Covariate Shift 
If you are in the covariate shift setting instead of being in the prior probability shift setting, you have to 
do something a little differently to make your model robust to the deployment environment. Here too, 
robustness means setting up a min-max optimization problem so that you do the best that you can in 
preventing the worst-case behavior. Starting from the importance weight formulation of Equation 9.1, 
put in an extra maximum loss over the weights:14 

𝑦̂(∙) = arg min
𝑓∈ℱ

max
𝑤

1

𝑛
∑ 𝑤𝑗𝐿 (𝑦𝑗 , 𝑓(𝑥𝑗))

𝑛

𝑗=1

, 

Equation 9.5 

where 𝑤 is the set of possible weights that are non-negative and sum to one. The classifier that optimizes 
the objective in Equation 9.5 is the robust classifier you’ll want to use for the Phulo model to deal with 
covariate shift.  

9.4.3 Concept Drift and Other Distribution Shifts 
Just like adapting to concept drift is harder than adapting to prior probability shift and covariate shift 
because it stems from measurement bias instead of sampling bias, robustness to concept drift is also 
harder. It is one of the most vexing problems in machine learning. You can’t really pose a min-max 

 

 
14Junfeng Wen, Chun-Nam Yu, and Russell Greiner. “Robust Learning under Uncertain Test Distributions: Relating Covariate 
Shift to Model Misspecification.” In: Proceedings of the International Conference on Machine Learning. Beijing, China, Jun. 2014, pp. 
631–639. Weihua Hu, Gang Niu, Issei Sato, and Masashi Sugiyama. “Does Distributionally Robust Supervised Learning Give 
Robust Classifiers?” In: Proceedings of the International Conference on Machine Learning. Stockholm, Sweden, Jul. 2018, pp. 2029–
2037. 
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formulation because the training data from East and Central African countries is not indicating the right 
relationship between the features and label in India. A model robust to concept drift must extrapolate 
outside of what the training data can tell you. And that is too open-ended of a task to do well unless you 
make some more assumptions.  

One reasonable assumption you can make is that the set of features split into two types: (1) causal or 
stable features, and (2) spurious features. You don’t know which ones are which beforehand. The causal 
features capture the intrinsic parts of the relationship between features and labels, and are the same set 
of features in different environments. In other words, this set of features is invariant across the 
environments. Spurious features might be predictive in one environment or a few environments, but 
not universally so across environments. You want the Phulo model to rely on the causal features whose 
predictive relationship with labels holds across Tanzania, Rwanda, Congo, and all the other countries 
that Wavetel has data from and ignore the spurious features. By doing so, the hope is that the model will 
not only perform well for the countries in the training set, but also any new country or environment that 
it encounters, such as India. It will be robust to the environment in which it is deployed. 

“ML enables an increased emphasis on stability and robustness.” 

—Susan Athey, economist at Stanford University 

Invariant risk minimization is a variation on the standard risk minimization formulation of machine 
learning that helps the model focus on the causal features and avoid the spurious features when there 
is data from more than one environment available for training. The formulation is:15 

𝑦̂(∙) = arg min
𝑓∈ℱ

∑
1

𝑛𝑒

∑ 𝐿 (𝑦𝑗
(𝑒)

, 𝑓(𝑥𝑗
(𝑒)

)) .

𝑛𝑒

𝑗=1𝑒∈ℰ

 

such that 𝑓 ∈ arg min
𝑔∈ℱ

1

𝑛𝑒

∑ 𝐿 (𝑦𝑗
(𝑒)

, 𝑔(𝑥𝑗
(𝑒)

))  for all 𝑒 ∈ ℰ.

𝑛𝑒

𝑗=1

 

Equation 9.6 

Let’s break this equation down bit by bit to understand it more. First, the set ℰ is the set of all 
environments or countries from which we have training data (Tanzania, Rwanda, Congo, etc.) and each 
country is indexed by 𝑒. There are 𝑛𝑒 training samples {(𝑥1

(𝑒)
, 𝑦1

(𝑒)
), … , (𝑥𝑛𝑒

(𝑒)
, 𝑦𝑛𝑒

(𝑒)
)} from each country. The 

inner summation in the top line is the regular risk expression that we’ve seen before in Chapter 7. The 
outer summation in the top line is just adding up all the risks for all the environments, so that the 
classifier minimizes the total risk. The interesting part is the constraint in the second line. It is saying 
that the classifier that is the solution of the top line must simultaneously minimize the risk for each of 
the environments or countries separately as well. As you know from earlier in the chapter, there can be 

 

 
15Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. “Invariant Risk Minimization.” arXiv:1907.02893, 
2020. 
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many different classifiers that minimize the loss—they are the Rashomon set—and that is why the second 
line has the ‘element of’ symbol ∈. The invariant risk minimization formulation adds extra specification 
to reduce the epistemic uncertainty and allow for better out-of-distribution generalization. 

You might ask yourself whether the constraint in the second line does anything useful. Shouldn’t the 
first line alone give you the same solution? This is a question that machine learning researchers are 
currently struggling with.16 They find that usually, the standard risk minimization formulation of 
machine learning from Chapter 7 is the most robust to general distribution shifts, without the extra 
invariant risk minimization constraints. However, when the problem is an anticausal learning problem 
and the feature distributions across environments have similar support, invariant risk minimization 
may outperform standard machine learning (remember from earlier in the chapter that the label causes 
the features in anticausal learning).17 

In a mobile money-enabled credit approval setting like you have with Phulo, it is not entirely clear 
whether the problem is causal learning or anticausal learning: do the features cause the label or do the 
labels cause the features? In a traditional credit scoring problem, you are probably in the causal setting 
because there are strict parameters on features like salary and assets that cause a person to be viewed 
by a bank as creditworthy or not. In the mobile money and unbanked setting, you could also imagine the 
problem to be anticausal if you think that a person is inherently creditworthy or not, and the features 
you’re able to collect from their mobile phone usage are a result of the creditworthiness. As you’re 
developing the Phulo model, you should give invariant risk minimization a shot because you have 
datasets from several countries, require robustness to concept drift and generalization to new countries, 
and likely have an anticausal learning problem. You and your data science team can be happy that you’ve 
given Wavetel and the Bank of Bulandshahr a model they can rely on during the launch of Phulo. 

 

9.5 Summary 
▪ Machine learning models should not take shortcuts if they are to be reliable. You must minimize 

epistemic uncertainty in modeling, data preparation, sampling, and measurement. 

▪ Data augmentation is a way to reduce epistemic uncertainty in modeling. 

▪ Distribution shift—the mismatch between the probability distribution of the training data and the 
data you will see during deployment—has three special cases: prior probability shift, covariate 
shift, and concept drift. Often, you can’t detect distribution shift. You just have to assume it. 

▪ Prior probability shift and covariate shift are easier to overcome than concept drift because they 
arise from sampling bias rather than measurement bias. 

▪ A pre-processing strategy for mitigating prior probability shift and covariate shift is adaptation, 
in which sample weights multiply the training loss during the model learning process. Finding 

 

 
16Ishaan Gulrajani and David Lopez-Paz. “In Search of Lost Domain Generalization.” In: Proceedings of the International Confer-
ence on Learning Representations. May 2021. Pritish Kamath, Akilesh Tangella, Danica J. Sutherland, and Nathan Srebro. “Does 
Invariant Risk Minimization Capture Invariance?” arXiv:2010.01134, 2021. 
17Kartik Ahuja, Jun Wang, Karthikeyan Shanmugam, Kush R. Varshney, and Amit Dhurandhar. “Empirical or Invariant Risk 
Minimization? A Sample Complexity Perspective.” In: Proceedings of the International Conference on Learning Representations. May 
2021.  
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the weights requires a fixed target deployment distribution and unlabeled data from it. 

▪ A strategy for mitigating prior probability and covariate shift during model training is min-max 
robustness, which changes the learning formulation to try to do the best in the worst-case 
environment that could be encountered during deployment. 

▪ Adapting to concept drift requires the acquisition of some labeled data from the deployment 
environment. 

▪ Invariant risk minimization is a strategy for mitigating concept drift and achieving distributional 
robustness that focuses the model’s efforts on causal features and ignores spurious features. It 
may work well in anticausal learning scenarios in which the label causes the features. 
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10  
Fairness 

Sospital is a leading (fictional) health insurance company in the United States. Imagine that you are the 
lead data scientist collaborating with a problem owner in charge of transforming the company’s care 
management programs. Care management is the set of services that help patients with chronic or 
complex conditions manage their health and have better clinical outcomes. Extra care management is 
administered by a dedicated team composed of physicians, other clinicians, and caregivers who come 
up with and execute a coordinated plan that emphasizes preventative health actions. The problem 
owner at Sospital has made a lot of progress in implementing software-based solutions for the care 
coordination piece and has changed the culture to support them, but is still struggling with the patient 
intake process. The main struggle is in identifying the members of health plans that need extra care 
management. This is a mostly manual process right now that the problem owner would like to automate. 

You begin the machine learning lifecycle through an initial set of conversations with the problem 
owner and determine that it is not an exploitative use case that could immediately be an instrument of 
oppression. It is also a problem in which machine learning may be helpful. You next consult a paid panel 
of diverse voices that includes actual patients. You learn from them that black Americans have not been 
served well by the health care system historically and have a deep-seated mistrust of it. Therefore, you 
should ensure that the machine learning model does not propagate systematic disadvantage to the black 
community. The system should be fair and not contain unwanted biases.  

Your task now is to develop a detailed problem specification for a fair machine learning system for 
allocating care management programs to Sospital members and proceed along the different phases of 
the machine learning lifecycle without taking shortcuts. In this chapter, you will: 

▪ compare and contrast definitions of fairness in a machine learning context,  

▪ select an appropriate notion of fairness for your task, and 

▪ mitigate unwanted biases at various points in the modeling pipeline to achieve fairer systems. 
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10.1 The Different Definitions of Fairness 
The topic of this chapter, algorithmic fairness, is the most contested topic in the book because it is 
intertwined with social justice and cannot be reduced to technical-only conceptions. Because of this 
broader conception of fairness, it may seem odd to you that this chapter is in a part of the book that also 
contains technical robustness. The reason for including it this way is due to the technical similarities 
with robustness which you, as a data scientist, can make use of and which are rarely recognized in other 
literature. This choice was not made to minimize the social importance of algorithmic fairness. 

Fairness and justice are almost synonymous, and are political. There are several kinds of justice, 
including (1) distributive justice, (2) procedural justice, (3) restorative justice, and (4) retributive justice. 

▪ Distributive justice is equality in what people receive—the outcomes.  

▪ Procedural justice is sameness in the way it is decided what people receive.  

▪ Restorative justice repairs a harm.  

▪ Retributive justice seeks to punish wrongdoers.  

All of the different forms of justice have important roles in society and sociotechnical systems. In the 
problem specification phase of a model that determines who receives Sospital’s care management and 
who doesn’t, you need to focus on distributive justice. This focus on distributive justice is generally true 
in designing machine learning systems because machine learning itself is focused on outcomes. The 
other kinds of justice are important in setting the context in which machine learning is and is not used. 
They are essential in promoting accountability and holistically tamping down racism, sexism, classism, 
ageism, ableism, and other unwanted discriminatory behaviors. 

“Don’t conflate CS/AI/tech ethics and social justice issues. They’re definitely related, 
but not interchangeable.” 

—Brandeis Marshall, computer scientist at Spelman College 

Why would different individuals and groups receive an unequal allocation of care management? 
Since it is a limited resource, not everyone can receive it.1 The more chronically ill that patients are, the 
more likely they should be to receive care management. This sort of discrimination is generally 
acceptable, and is the sort of task machine learning systems are suited for. It becomes unacceptable and 
unfair when the allocation gives a systematic advantage to certain privileged groups and individuals and a 
systematic disadvantage to certain unprivileged groups and individuals. Privileged groups and 
individuals are defined to be those who have historically been more likely to receive the favorable label in 
a machine learning binary classification task. Receiving care management is a favorable label because 
patients are given extra services to keep them healthy. Other favorable labels include being hired, not 
being fired, being approved for a loan, not being arrested, and being granted bail. Privilege is a result of 
power imbalances, and the same groups may not be privileged in all contexts, even within the same 
society. In some narrow societal contexts, it may even be the elite who are without power. 

 

 
1You can argue that this way of thinking is flawed and society should be doing whatever it takes so that care management is not 
a limited resource, but it is the reality today.  
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Privileged and unprivileged groups are delineated by protected attributes such as race, ethnicity, 
gender, religion, and age. There is no one universal set of protected attributes. They are determined 
from laws, regulations, or other policies governing a particular application domain in a particular 
jurisdiction. As a health insurer in the United States, Sospital is regulated under Section 1557 of the 
Patient Protection and Affordable Care Act with the specific protected attributes of race, color, national 
origin, sex, age, and disability. In health care in the United States, non-Hispanic whites are usually a 
privileged group due to multifaceted reasons of power. For ease of explanation and conciseness, the 
remainder of the chapter uses whites as the privileged group and blacks as the unprivileged group. 

There are two main types of fairness you need to be concerned about: (1) group fairness and (2) 
individual fairness. Group fairness is the idea that the average classifier behavior should be the same 
across groups defined by protected attributes. Individual fairness is the idea that individuals similar in 
their features should receive similar model predictions. Individual fairness includes the special case of 
two individuals who are exactly the same in every respect except for the value of one protected attribute 
(this special case is known as counterfactual fairness). Given the regulations Sospital is operating under, 
group fairness is the more important notion to include in the care management problem specification, 
but you should not forget to consider individual fairness in your problem specification. 

 

10.2 Where Does Unfairness Come From? 
Unfairness in the narrow scope of allocation decisions (distributive justice) has a few different sources. 
The most obvious source of unfairness is unwanted bias, specifically social bias in the measurement 
process (going from the construct space to the observed space) and representation bias in the sampling 
process (going from the observed space to the raw data space) that you learned about in Chapter 4, 
shown in Figure 10.1. (This is a repetition of Figure 9.2 and an extension of Figure 4.3 where the 
concepts of construct space and observed space were first introduced.) 

In the data understanding phase, you have figured out that you will use privacy-preserved historical 
medical claims from Sospital members along with their past selection for care management as the data 
source. Medical claims data is generated any time a patient sees a doctor, undergoes a procedure, or fills 
a pharmacy order. It is structured data that includes diagnosis codes, procedure codes, and drug codes, 
all standardized using the ICD-10, CPT, and NDC schemes, respectively.2 It also includes the dollar 
amount billed and paid along with the date of service. It is administrative data used by the healthcare 
provider to get reimbursed by Sospital. 

“If humans didn’t behave the way we do there would be no behavior data to correct. 
The training data is society.” 

— M. C. Hammer, musician and technology consultant 

 

 

 
2See https://www.cms.gov/files/document/blueprint-codes-code-systems-value-sets.pdf for details about these coding 
schemes. 
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Figure 10.1. Bias in measurement and sampling are the most obvious sources of unfairness in machine learning, 
but not the only ones. Accessible caption. A sequence of five spaces, each represented as a cloud. The 
construct space leads to the observed space via the measurement process. The observed space leads to 
the raw data space via the sampling process. The raw data space leads to the prepared data space via 
the data preparation process. The prepared data space leads to the prediction space via the modeling 
process. The measurement process contains social bias, which threatens construct validity. The sam-
pling process contains representation bias and temporal bias, which threatens external validity. The 
data preparation process contains data preparation bias and data poisoning, which threaten internal 
validity. The modeling process contains underfitting/overfitting and poor inductive bias, which 
threaten generalization. 

Social bias enters claims data in a few ways. First, you might think that patients who visit doctors a 
lot and get many prescriptions filled, i.e. utilize the health care system a lot, are sicker and thus more 
appropriate candidates for care management. While it is directionally true that greater health care 
utilization implies a sicker patient, it is not true when comparing patients across populations such as 
whites and blacks. Blacks tend to be sicker for an equal level of utilization due to structural issues in the 
health care system.3 The same is true when looking at health care cost instead of utilization. Another 
social bias can be in the codes. For example, black people are less-often treated for pain than white 
people in the United States due to false beliefs among clinicians that black people feel less pain.4 
Moreover, there can be social bias in the human-determined labels of selection for care management in 
the past due to implicit cognitive biases or prejudice on the part of the decision maker. Representation 
bias enters claims data because it is only from Sospital’s own members. This population may, for 
example, undersample blacks if Sospital offers its commercial plans primarily in counties with larger 
white populations. 

Besides the social and representation biases given above that are already present in raw data, you 
need to be careful that you don’t introduce other forms of unfairness in the problem specification and 
data preparation phases. For example, suppose you don’t have the labels from human decision makers 
in the past. In that case, you might decide to use a threshold on utilization or cost as a proxy outcome 

 

 
3Moninder Singh and Karthikeyan Natesan Ramamurthy. “Understanding Racial Bias in Health Using the Medical Expenditure 
Panel Survey Data.” In: Proceedings of the NeurIPS Workshop on Fair ML for Health. Vancouver, Canada, Dec. 2019.  
4Oluwafunmilayo Akinlade. “Taking Black Pain Seriously.” In: New England Journal of Medicine 383.e68 (Sep. 2020).  
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variable, but that would make blacks less likely to be selected for care management at equal levels of 
infirmity for the reasons described above. Also, as part of feature engineering, you might think to 
combine individual cost or utilization events into more comprehensive categories, but if you aren’t 
careful you could make racial bias worse. It turns out that combining all kinds of health system 
utilization into a single feature yields unwanted racial bias, but keeping inpatient hospital nights and 
frequent emergency room utilization as separate kinds of utilization keeps the bias down in nationally-
representative data.5 

“As AI is embedded into our day to day lives it’s critical that we ensure our models 
don’t inadvertently incorporate latent stereotypes and prejudices.” 

—Richard Zemel, computer scientist at University of Toronto 

You might be thinking that you already know how to measure and mitigate biases in measurement, 
sampling, and data preparation from Chapter 9, distribution shift. What’s different about fairness? 
Although there is plenty to share between distribution shift and fairness,6 there are two main technical 
differences between the two topics. First is access to the construct space. You can get data from the 
construct space in distribution shift scenarios. Maybe not immediately, but if you wait, collect, and label 
data from the deployment environment, you will have data reflecting the construct space. However, you 
never have access to the construct space in fairness settings. The construct space reflects a perfect 
egalitarian world that does not exist in real life, so you can’t get data from it. (Recall that in Chapter 4, we 
said that hakuna matata reigns in the construct space (it means no worries).) Second is the specification 
of what is sought. In distribution shift, there is no further specification beyond just trying to match the 
shifted distribution. In fairness, there are precise policy-driven notions and quantitative criteria that 
define the desired state of data and/or models that are not dependent on the data distribution you have. 
You’ll learn about these precise notions and how to choose among them in the next chapter. 

Related to causal and anticausal learning covered in Chapter 9, the protected attribute is like the 
environment variable. Fairness and distributive justice are usually conceived in a causal (rather than 
anticausal) learning framework in which the outcome label is extrinsic: the protected attribute may 
cause the other features, which in turn cause the selection for care management. However, this setup is 
not always the case. 

 

10.3 Defining Group Fairness 
You’ve gone back to the problem specification phase after some amount of data understanding because 
you and the problem owner have realized that there is a strong possibility of unfairness if left unchecked. 
Given the Section 1557 regulations Sospital is working under as a health insurer, you start by looking 

 

 
5Moninder Singh. “Algorithmic Selection of Patients for Case Management: Alternative Proxies to Healthcare Costs.” In: Pro-
ceedings of the AAAI Workshop on Trustworthy AI for Healthcare. Feb. 2021. 
6Elliot Creager, Jörn-Henrik Jacobsen, and Richard Zemel. “Exchanging Lessons Between Algorithmic Fairness and Domain 
Generalization.” arXiv:2010.07249, 2020. 
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deeper into group fairness. Group fairness is about comparing members of the privileged group and 
members of the unprivileged group on average.  

10.3.1 Statistical Parity Difference and Disparate Impact Ratio 
One key concept in unwanted discrimination is disparate impact: privileged and unprivileged groups 
receiving different outcomes irrespective of the decision maker’s intent and irrespective of the decision-
making procedure. Statistical parity difference is a group fairness metric that you can consider in the 
care management problem specification that quantifies disparate impact by computing the difference 
in selection rates of the favorable label 𝑃(𝑦̂(𝑋) = fav) (rate of receiving extra care) between the privileged 
(𝑍 =  priv; whites) and unprivileged groups (𝑍 =  unpr; blacks):  

statistical parity difference = 𝑃( 𝑦̂(𝑋) = fav ∣∣ 𝑍 = unpr ) − 𝑃( 𝑦̂(𝑋) = fav ∣∣ 𝑍 = priv ). 

Equation 10.1 

A value of 0 means that members of the unprivileged group (blacks) and the privileged group (whites) 
are getting selected for extra care management at equal rates, which is considered a fair situation. A 
negative value of statistical parity difference indicates that the unprivileged group is at a disadvantage 
and a positive value indicates that the privileged group is at a disadvantage. A requirement in a problem 
specification may be that the learned model must have a statistical parity difference close to 0. An 
example calculation of statistical parity difference is shown in Figure 10.2. 

 
Figure 10.2. An example calculation of statistical parity difference. Accessible caption. 3 members of the 
unprivileged group are predicted with the favorable label (receive care management) and 7 are pre-
dicted with the unfavorable label (don’t receive care management). 4 members of the privileged group 
are predicted with the favorable label and 6 are predicted with the unfavorable label. The selection rate 
for the unprivileged group is 3/10 and for the privileged group is 4/10. The difference, the statistical 
parity difference is −0.1. 

Disparate impact can also be quantified as a ratio: 

disparate impact ratio = 𝑃( 𝑦̂(𝑋) = fav ∣∣ 𝑍 = unpr )/𝑃( 𝑦̂(𝑋) = fav ∣∣ 𝑍 = priv ). 

Equation 10.2 
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Here, a value of 1 indicates fairness, values less than 1 indicate disadvantage faced by the unprivileged 
group, and values greater than 1 indicate disadvantage faced by the privileged group. The disparate 
impact ratio is also sometimes known as the relative risk ratio or the adverse impact ratio. In some 
application domains such as employment, a value of the disparate impact ratio less than 0.8 is 
considered unfair and values greater than 0.8 are considered fair. This so-called four-fifths rule problem 
specification is asymmetric because it does not speak to disadvantage experienced by the privileged 
group. It can be symmetrized by considering disparate impact ratios between 0.8 and 1.25 to be fair. 
Statistical parity difference and disparate impact ratio can be understood as measuring a form of 
independence between the prediction 𝑦̂(𝑋) and the protected attribute 𝑍.7 Besides statistical parity 
difference and disparate impact ratio, another way to quantify the independence between 𝑦̂(𝑋) and 𝑍 is 
their mutual information. 

Both statistical parity difference and disparate impact ratio can also be defined on the training data 
instead of the model predictions by replacing 𝑦̂(𝑋) with 𝑌. Thus, they can be measured and tested (1) on 
the dataset before model training, as a dataset fairness metric, as well as (2) on the learned classifier after 
model training as a classifier fairness metric, shown in Figure 10.3. 

 
Figure 10.3. Two types of fairness metrics in different parts of the machine learning pipeline. Accessible cap-
tion. A block diagram with a training dataset as input to a pre-processing block with a pre-processed 
dataset as output. The pre-processed dataset is input to a model training block with an initial model as 
output. The initial model is input to a post-processing block with a final model as output. A dataset 
fairness metric block is applied to the training dataset and pre-processed dataset. A classifier fairness 
metric block is applied to the initial model and final model. 

10.3.2 Average Odds Difference 
You’ve examined disparate impact-based group fairness metrics so far, but want to learn another one 
before you start comparing and contrasting them as you figure out the problem specification for the care 
management model. A different group fairness metric is average odds difference, which is based on model 
performance metrics rather than simply the selection rate. (It can thus only be used as a classifier 
fairness metric, not a dataset fairness metric as shown in Figure 10.3.) The average odds difference 
involves the two metrics in the ROC: the true favorable label rate (true positive rate) and the false 
favorable label rate (false positive rate). You take the difference of true favorable rates between the 

 

 
7Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning: Limitations and Opportunities. URL: 
https://fairmlbook.org, 2020. 
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unprivileged and privileged groups and the difference of the false favorable rates between the 
unprivileged and privileged groups, and average them:  

average odds difference 

=  
1

2
(𝑃( 𝑦̂(𝑋) = fav ∣∣ 𝑌 = fav, 𝑍 = unpr ) − 𝑃( 𝑦̂(𝑋) = fav ∣∣ 𝑌 = fav, 𝑍 = priv ))

+
1

2
(𝑃( 𝑦̂(𝑋) = fav ∣∣ 𝑌 = unf, 𝑍 = unpr ) − 𝑃( 𝑦̂(𝑋) = fav ∣∣ 𝑌 = unf, 𝑍 = priv )). 

Equation 10.3 

An example calculation of average odds difference is shown in Figure 10.4. 

 
Figure 10.4. An example calculation of average odds difference. The crosses below the members indicate a true 
need for care management. Accessible caption. In the unprivileged group, 2 members receive true favora-
ble outcomes and 2 receive false unfavorable outcomes, giving a 2/4 true favorable rate. In the privi-
leged group, 3 members receive true favorable outcomes and 1 receives a false unfavorable outcome, 
giving a 3/4 true favorable rate. The true favorable rate difference is −0.25. In the unprivileged group, 1 
member receives a false favorable outcome and 5 receive a true unfavorable outcome, giving a 1/6 
false favorable rate. In the privileged group, 1 member receives a false favorable outcome and 5 re-
ceive a true unfavorable outcome, giving a 1/6 false favorable rate. The false favorable rate difference 
is 0. Averaging the two differences gives a −0.125 average odds difference. 

In the average odds difference, the true favorable rate difference and the false favorable rate 
difference can cancel out and hide unfairness, so it is better to take the absolute value before averaging: 

average absolute odds difference 

=  
1

2
|𝑃( 𝑦̂(𝑋) = fav ∣∣ 𝑌 = fav, 𝑍 = unpr ) − 𝑃( 𝑦̂(𝑋) = fav ∣∣ 𝑌 = fav, 𝑍 = priv )|

+
1

2
|𝑃( 𝑦̂(𝑋) = fav ∣∣ 𝑌 = unf, 𝑍 = unpr ) − 𝑃( 𝑦̂(𝑋) = fav ∣∣ 𝑌 = unf, 𝑍 = priv )|. 

Equation 10.3 

The average odds difference is a way to measure the separation of the prediction 𝑦̂(𝑋) and the protected 
attribute 𝑍 by the true label 𝑌 in any of the three Bayesian networks shown in Figure 10.5. A value of 0 
average absolute odds difference indicates independence of 𝑦̂(𝑋) and 𝑍 conditioned on 𝑌. This is deemed 
a fair situation and termed equality of odds. 
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Figure 10.5. Illustration of the true label 𝑌 separating the prediction and the protected attribute in various 
Bayesian networks. Accessible caption. Three networks that show separation: 𝑌̂ → 𝑌 → 𝑍, 𝑌̂  𝑌  𝑍, and 
𝑌̂  𝑌 → 𝑍.  

10.3.3 Choosing Between Statistical Parity and Average Odds Difference 
What’s the point of these two different group fairness metrics? They don’t appear to be radically 
different. But they actually are radically different in an important conceptual way: either you believe 
there is social bias during measurement or not. These two worldviews have been named (1) “we’re all 
equal” (the privileged group and unprivileged group have the same inherent distribution of health in the 
construct space, but there is bias during measurement that makes it appear this is not the case) and (2) 
“what you see is what you get” (there are inherent differences between the two groups in the construct 
space and this shows up in the observed space without a need for any bias during measurement).8 Since 
under the “we’re all equal” worldview, there is already structural bias in the observed space (blacks have 
lower health utilization and cost for the same level of health as whites), it does not really make sense to 
look at model accuracy rates computed in an already-biased space. Therefore, independence or 
disparate impact fairness definitions make sense and your problem specification should be based on 
them. However, if you believe that “what you see is what you get”—the observed space is a true 
representation of the inherent distributions of the groups and the only bias is sampling bias—then the 
accuracy-related equality of odds fairness metrics make sense. In this case, your problem specification 
should be based on equality of odds. 

10.3.4 Average Predictive Value Difference 
And if it wasn’t complicated enough, let’s throw one more group fairness definition into the mix: 
calibration by group or sufficiency. Recall from Chapter 6 that for continuous score outputs, the predicted 
score corresponds to the proportion of positive true labels in a calibrated classifier, or 𝑃( 𝑌 = 1 ∣ 𝑆 = 𝑠 ) =

𝑠. For fairness, you’d like the calibration to be true across the groups defined by protected attributes, so 
𝑃( 𝑌 = 1 ∣ 𝑆 = 𝑠, 𝑍 = 𝑧 ) = 𝑠 for all groups 𝑧. If a classifier is calibrated by group, it is also sufficient, which 
means that 𝑌 and 𝑍 conditioned on 𝑆 (or 𝑦̂(𝑋)) are independent. The graphical models for sufficiency are 
shown in Figure 10.6. To allow for better comparison to Figure 10.5 (the graphical models of separation), 
the predicted score is indicated by 𝑌̂ rather than 𝑆. 

 

 
8Sorelle A. Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. “On the (Im)possibility of Fairness: Different Value 
Systems Require Different Mechanisms for Fair Decision Making.” In: Communications of the ACM 64.4 (Apr. 2021), pp. 136–143. 
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Figure 10.6. Illustration of the predicted label 𝑌̂ separating the true label and the protected attribute in various 
Bayesian networks, which is known as sufficiency. Accessible caption. Three networks that show sufficiency: 
𝑌 → 𝑌̂ → 𝑍, 𝑌  𝑌̂  𝑍, and 𝑌  𝑌̂ → 𝑍. 

Since sufficiency and separation are somewhat opposites of each other with 𝑌 and 𝑌̂ reversed, their 
quantifications are also opposites with 𝑌 and 𝑌̂ reversed. Recall from Chapter 6 that the positive 
predictive value is the reverse of the true positive rate: 𝑃( 𝑌 = fav ∣∣ 𝑦̂(𝑋) = fav ) and that the false 
omission rate is the reverse of the false positive rate: 𝑃( 𝑌 = fav ∣∣ 𝑦̂(𝑋) = unf ). To quantify sufficiency 
unfairness, compute the average difference of the positive predictive value and false omission rate 
across the unprivileged (black) and privileged (white) groups: 

average predictive value difference 

=  
1

2
(𝑃( 𝑌 = fav ∣∣ 𝑦̂(𝑋) = fav, 𝑍 = unpr ) − 𝑃( 𝑌 = fav ∣∣ 𝑦̂(𝑋) = fav, 𝑍 = priv ))

+
1

2
(𝑃( 𝑌 = fav ∣∣ 𝑦̂(𝑋) = unf, 𝑍 = unpr ) − 𝑃( 𝑌 = fav ∣∣ 𝑦̂(𝑋) = unf, 𝑍 = priv )). 

Equation 10.4 

An example calculation for average predictive value difference is shown in Figure 10.7. The example 
illustrates a case in which the two halves of the metric cancel out because they have opposite sign, so a 
version with absolute values before averaging makes sense: 

average absolute predictive value difference 

=  
1

2
|𝑃( 𝑌 = fav ∣∣ 𝑦̂(𝑋) = fav, 𝑍 = unpr ) − 𝑃( 𝑌 = fav ∣∣ 𝑦̂(𝑋) = fav, 𝑍 = priv )|

+
1

2
|𝑃( 𝑌 = fav ∣∣ 𝑦̂(𝑋) = unf, 𝑍 = unpr ) − 𝑃( 𝑌 = fav ∣∣ 𝑦̂(𝑋) = unf, 𝑍 = priv )|. 

Equation 10.5 

 



140 | Trustworthy Machine Learning 

  
Figure 10.7. An example calculation of average predictive value difference. The crosses below the members indi-
cate a true need for care management. Accessible caption. In the unprivileged group, 2 members receive 
true favorable outcomes and 1 receives a false unfavorable outcome, giving a 2/3 positive predictive 
value. In the privileged group, 3 members receive true favorable outcomes and 1 receives a false unfa-
vorable outcome, giving a 3/4 positive predictive value. The positive predictive value difference is 
−0.08. In the unprivileged group, 2 members receive a false unfavorable outcome and 5 receive a true 
unfavorable outcome, giving a 2/7 false omission rate. In the privileged group, 1 member receives a 
false unfavorable outcome and 5 receive a true unfavorable outcome, giving a 1/6 false omission rate. 
The false omission rate difference is 0.12. Averaging the two differences gives a 0.02 average predictive 
value difference. 

10.3.5 Choosing Between Average Odds and Average Predictive Value Difference 
What’s the difference between separation and sufficiency? Which one makes more sense for the Sospital 
care management model? This is not a decision based on politics and worldviews like the decision 
between independence and separation. It is a decision based on what the favorable label grants the 
affected user: is it assistive or simply non-punitive?9 Getting a loan is assistive, but not getting arrested 
is non-punitive. Receiving care management is assistive. In assistive cases like receiving extra care, 
separation (equalized odds) is the preferred fairness metric because it relates to recall (true positive 
rate), which is of primary concern in these settings. If receiving care management had been a non-
punitive act, then sufficiency (calibration) would have been the preferred fairness metric because 
precision is of primary concern in non-punitive settings. (Precision is equivalent to positive predictive 
value, which is one of the two components of the average predictive value difference.).  

10.3.6 Conclusion 
You can construct all sorts of different group fairness metrics by computing differences or ratios of the 
various confusion matrix entries and other classifier performance metrics detailed in Chapter 6, but 
independence, separation, and sufficiency are the three main ones. They are summarized in Table 10.1.  

 

 

 
9Karima Makhlouf, Sami Zhioua, and Catuscia Palamidessi. “On the Applicability of ML Fairness Notions.” arXiv:2006.16745, 
2020. Boris Ruf and Marcin Detyniecki. “Towards the Right Kind of Fairness in AI.” arXiv:2102.08453, 2021. 
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Table 10.1. The three main types of group fairness metrics. 

Type Statistical 
Relation-
ship 

Fairness Metric Can Be A Da-
taset Metric? 

Social Bias in 
Measurement 

Favorable La-
bel 

independ-
ence 

𝑌̂ ⫫ 𝑍 statistical parity 
difference 

yes yes assistive or 
non-punitive 

separation 𝑌̂ ⫫ 𝑍 ∣ 𝑌 average odds dif-
ference 

no no assistive 

sufficiency 
(calibration) 

𝑌 ⫫ 𝑍 ∣ 𝑌̂ average predictive 
value difference 

no no non-punitive 

 
Based on the different properties of the three group fairness metrics, and the likely social biases in the 
data you’re using to create the Sospital care management model, you should focus on independence and 
statistical parity difference. 

  

10.4 Defining Individual and Counterfactual Fairness 
An important concept in fairness is intersectionality. Things might look fair when you look at different 
protected attributes separately, but when you define unprivileged groups as the intersection of multiple 
protected attributes, such as black women, group fairness metrics show unfairness. You can imagine 
making smaller and smaller groups by including more and more attributes, all the way to a logical end 
of groups that are just individuals that share all of their feature values. At this extreme, the group 
fairness metrics described in the previous section are no longer meaningful and a different notion of 
sameness is needed. That notion is individual fairness or consistency: that all individuals with the same 
feature values should receive the same predicted label and that individuals with similar features should 
receive similar predicted labels. 

10.4.1 Consistency 
The consistency metric is quantified as follows: 

consistency = 1 −
1

𝑛
∑ |𝑦̂𝑗 −

1

𝑘
∑ 𝑦̂𝑗′

𝑗′∈𝒩𝑘(𝑥𝑗)

|

𝑛

𝑗=1

. 

Equation 10.6 

For each of the 𝑛 Sospital members, the prediction 𝑦̂𝑗 is compared to the average prediction of the 𝑘 
nearest neighbors. When the predicted labels of all of the 𝑘 nearest neighbors match the predicted label 
of the person themselves, you get 0. If all of the nearest neighbor predicted labels are different from the 
predicted label of the person, the absolute value is 1. Overall, because of the ‘one minus’ at the beginning 
of Equation 10.6, the consistency metric is 1 if all similar points have similar labels and less than 1 if 
similar points have different labels.  
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The biggest question in individual fairness is deciding the distance metric by which the nearest 
neighbors are determined. Which kind of distance makes sense? Should all features be used in the 
distance computation? Should protected attributes be excluded? Should some feature dimensions be 
corrected for in the distance computation? These choices are where politics and worldviews come into 
play.10 Typically, protected attributes are excluded, but they don’t have to be. If you believe there is no 
bias during measurement (the “what you see is what you get” worldview), then you should simply use 
the features as is. In contrast, suppose you believe that there are structural social biases in measurement 
(the “we’re all equal” worldview). In that case, you should attempt to undo those biases by correcting the 
features as they’re fed into a distance computation. For example, if you believe that blacks with three 
outpatient doctor visits are equal in health to whites with five outpatient doctor visits, then your distance 
metric can add two outpatient visits to the black members as a correction. 

10.4.2 Counterfactual Fairness 
One special case of individual fairness is when two patients have exactly the same feature values and 
only differ in one protected attribute. Think of two patients, one black and one white who have an 
identical history of interaction with the health care system. The situation is deemed fair if both receive 
the same predicted label—either both are given extra care management or both are not given extra care 
management—and unfair otherwise. Now take this special case a step further. As a thought experiment, 
imagine an intervention 𝑑𝑜(𝑍) that changes the protected attribute of a Sospital member from black to 
white or vice versa. If the predicted label remains the same for all members, the classifier is 
counterfactually fair.11 (Actually intervening to change a member’s protected attribute is usually not 
possible immediately, but this is just a thought experiment.) Counterfactual fairness can be tested using 
treatment effect estimation methods from Chapter 8. 

Protected attributes causing different outcomes across groups is an important consideration in many 
laws and regulations.12 Suppose you have a full-blown causal graph of all the variables given to you or 
you discover one from data using the methods of Chapter 8. In that case, you can see which variables 
have causal paths to the label nodes, either directly or passing through other variables. If any of the 
variables with causal paths to the label are considered protected attributes, you have a fairness problem 
to investigate and mitigate. 

10.4.3 Theil Index 
If you don’t want to decide between group and individual fairness metrics as you’re figuring out the 
Sospital care management problem specification, do you have any other options? Yes you do. You can 
use the Theil index, which was first introduced in Chapter 3 as a summary statistic for uncertainty. It 
naturally combines both individual and group fairness considerations. Remember from that chapter 
that the Theil index was originally developed to measure the distribution of wealth in a society. A value 

 

 
10Reuben Binns. “On the Apparent Conflict Between Individual and Group Fairness.” In: Proceedings of the ACM Conference on 
Fairness, Accountability, and Transparency. Barcelona, Spain, Jan. 2020, pp. 514–524.  
11Joshua R. Loftus, Chris Russell, Matt J. Kusner, and Ricardo Silva. “Causal Reasoning for Algorithmic Fairness.” 
arXiv:1805.05859, 2018.  
12Alice Xiang. “Reconciling Legal and Technical Approaches to Algorithmic Bias.” In: Tennessee Law Review 88.3 (2021).  
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of 1 indicates a totally unfair society where one person holds all the wealth and a value of 0 indicates an 
egalitarian society where all people have the same amount of wealth.  

What is the equivalent of wealth in the context of machine learning and distributive justice in health 
care management? It has to be some sort of non-negative benefit value 𝑏𝑗 that you want to be equal for 
different Sospital members. Once you’ve defined the benefit 𝑏𝑗, plug it into the Theil index expression 
and use it as a combined group and individual fairness metric: 

Theil index =
1

𝑛
∑

𝑏𝑗

𝑏̅
log

𝑏𝑗

𝑏̅

𝑛

𝑗=1

. 

Equation 10.7 

The equation averages the benefit divided by the mean benefit 𝑏̅, multiplied by its natural log,  across all 
people. 

That’s all well and good, but benefit to who and under which worldview? The research group that 
proposed using the Theil index in algorithmic fairness suggested that 𝑏𝑗 be 2 for false favorable labels 
(false positives), 1 for true favorable labels (true positives),  1 for true unfavorable labels (true negatives), 
and 0 for false unfavorable labels (false negatives).13 This recommendation is seemingly consistent with 
the “what you see is what you get” worldview because it is examining model performance, assumes the 
costs of false positives and false negatives are the same, and takes the perspective of affected members 
who want to get care management even if they are not truly suitable candidates. More appropriate 
benefit functions for the problem specification of the Sospital model may be 𝑏𝑗 that are (1) 1 for true 
favorable and true unfavorable labels and 0 for false favorable and false unfavorable labels (“what you 
see is what you get” while balancing societal needs), or (2) 1 for true favorable and false favorable labels 
and 0 for true unfavorable and false unfavorable labels (“we’re all equal”). 

10.4.4 Conclusion 
Individual fairness consistency and Theil index are both excellent ways to capture various nuances of 
fairness in different contexts. Just like group fairness metrics, they require you to clarify your worldview 
and aim for the same goals in a bottom-up way. Since the Sospital care management setting is regulated 
using group fairness language, it behooves you to use group fairness metrics in your problem 
specification and modeling. Counterfactual or causal fairness is a strong requirement from the 
perspective of the philosophy and science of law, but the regulations are only just catching up. So you 
might need to utilize causal fairness in problem specifications in the future, but not just yet. As you’ve 
learned so far, the problem specification and data phases are critical for fairness. But that makes the 
modeling phase no less important. The next section focuses on bias mitigation to improve fairness as 
part of the modeling pipeline. 

 

 

 
13Till Speicher, Hoda Heidari, Nina Grgić-Hlača, Krishna P. Gummadi, Adish Singla, Adrian Weller, and Muhammad Bilal 
Zafar. “A Unified Approach to Quantifying Algorithmic Unfairness: Measuring Individual & Group Unfairness via Inequality 
Indices.” In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. London, England, UK, 
Jul. 2018, pp. 2239–2248. 
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10.5 Mitigating Unwanted Bias 
From the earlier phases of the lifecycle of the Sospital care management model, you know that you must 
address unwanted biases during the modeling phase. Given the quantitative definitions of fairness and 
unfairness you’ve worked through, you know that mitigating bias entails introducing some sort of 
statistical independence between protected attributes like race and true or predicted labels of needing 
care management. That sounds easy enough, so what’s the challenge? What makes bias mitigation 
difficult is that other regular predictive features 𝑋 have statistical dependencies with the protected 
attributes and the labels (a node for 𝑋 was omitted from Figure 10.5 and Figure 10.6, but out-of-sight 
does not mean out-of-mind). The regular features can reconstruct the information contained in the 
protected attributes and introduce dependencies, even if you do the most obvious thing of dropping the 
protected attributes from the data. For example, race can be strongly associated both with certain health 
care providers (some doctors have predominantly black patients and other doctors have predominantly 
white patients) and with historical selection for extra care management. 

Bias mitigation methods must be more clever than simply dropping protected attributes. Don’t take 
a shortcut: dropping protected attributes is never the right answer. Remember the two main ways of 
mitigating the ills of distribution shift in Chapter 9: adaptation and min-max robustness. When applied to 
bias mitigation, adaptation-based techniques are much more common than robustness-based ones, but 
rely on having protected attributes in the training dataset.14 They are the subject of the remainder of this 
section. If the protected attributes are not available in the training data, min-max robustness techniques 
for fairness that mirror those for distribution shift can be used.15 

Figure 10.8 (a subset of Figure 10.3) shows three different points of intervention for bias mitigation: 
(1) pre-processing which alters the statistics of the training data, (2) in-processing which adds extra 
constraints or regularization terms to the learning process, and (3) post-processing which alters the output 
predictions to make them more fair. Pre-processing can only be done when you have the ability to touch 
and modify the training data. Since in-processing requires you to mess with the learning algorithm, it is 
the most involved and least flexible. Post-processing is almost always possible and the easiest to pull off. 
However, the earlier in the pipeline you are, the more effective you can be.   

There are several specific methods within each of the three categories of bias mitigation techniques 
(pre-processing, in-processing, post-processing). Just like for accuracy, no one best algorithm 
outperforms all other algorithms on all datasets and fairness metrics (remember the no free lunch 
theorem). Just like there are differing domains of competence for classifiers covered in Chapter 7, there 
are differing domains of competence for bias mitigation algorithms. However, fairness is a new field that 
has not yet been studied extensively enough to have good characterizations of those domains of 
competence yet. In Chapter 7, it was important to go down into the details of machine learning methods 

 

 
14The assumption that training datasets contain protected attributes can be violated for regulatory or privacy reasons. The 
situation is known as fairness under unawareness. See: Jiahao Chen, Nathan Kallus, Xiaojie Mao, Geoffry Svacha, and Madeleine 
Udell. “Fairness Under Unawareness.” In: Proceedings of the ACM Conference on Fairness, Accountability, and Transparency. Atlanta, 
Georgia, USA, Jan. 2019, pp. 339–348. 
15Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. “Fairness Without Demographics in Re-
peated Loss Minimization.” In: Proceedings of the International Conference on Machine Learning. Stockholm, Sweden, Jul. 2018, pp. 
1929–1938. Preethi Lahoti, Alex Beutel, Jilin Chen, Kang Lee, Flavien Prost, Nithum Thain, Xuezhi Wang, and Ed H. Chi. “Fair-
ness Without Demographics through Adversarially Reweighted Learning.” In: Advances in Neural Information Processing Systems 
33 (Dec. 2020), pp. 728–740. 
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because that understanding is used in this and other later chapters. The reason to dive into the details 
of bias mitigation algorithms is different. In choosing a bias mitigation algorithm, you have to (1) know 
where in the pipeline you can intervene, (2) consider your worldview, and (3) understand whether 
protected attributes are allowed as features and will be available in the deployment data when you are 
scoring new Sospital members. 

 
Figure 10.8. Three types of bias mitigation algorithms in different parts of the machine learning pipeline. Acces-
sible caption. A block diagram with a training dataset as input to a bias mitigation pre-processing 
block with a pre-processed dataset as output. The pre-processed dataset is input to a bias mitigation 
in-processing block with an initial model as output. The initial model is input to a bias mitigation post-
processing block with a final model as output. 

10.5.1 Pre-Processing 
At the pre-processing stage of the modeling pipeline, you don’t have the trained model yet. So pre-
processing methods cannot explicitly include fairness metrics that involve model predictions. 
Therefore, most pre-processing methods are focused on the “we’re all equal” worldview, but not 
exclusively so. There are several ways for pre-processing a training data set: (1) augmenting the dataset 
with additional data points, (2) applying instance weights to the data points, and (3) altering the labels. 

One of the simplest algorithms for pre-processing the training dataset is to append additional rows 
of made-up members that do not really exist. These imaginary members are constructed by taking 
existing member rows and flipping their protected attribute values (like counterfactual fairness).16 The 
augmented rows are added sequentially based on a distance metric so that ‘realistic’ data points close 
to modes of the underlying dataset are added first. This ordering maintains the fidelity of the data 
distribution for the learning task. A plain uncorrected distance metric takes the “what you see is what 
you get” worldview and only overcomes sampling bias, not measurement bias. A corrected distance 
metric like the example described in the previous section (adding two outpatient visits to the black 
members) takes the “we’re all equal” worldview and can overcome both measurement and sampling 
bias (threats to both construct and external validity). This data augmentation approach needs to have 
protected attributes as features of the model and they must be available in deployment data. 

Another way to pre-process the training data set is through sample weights, similar to inverse 
probability weighting and importance weighting seen in Chapter 8 and Chapter 9, respectively. The 
reweighing method is geared toward improving statistical parity (“we’re all equal” worldview), which can 
be assessed before the care management model is trained and is a dataset fairness metric.17 The goal of 

 

 
16Shubham Sharma, Yunfeng Zhang, Jesús M. Ríos Aliaga, Djallel Bouneffouf, Vinod Muthusamy, and Kush R. Varshney. “Data 
Augmentation for Discrimination Prevention and Bias Disambiguation.” In: Proceedings of the AAAI/ACM Conference on AI, Ethics, 
and Society. New York, New York, USA, Feb. 2020, pp. 358–364. 
17Faisal Kamiran and Toon Calders. “Data Preprocessing Techniques for Classification without Discrimination.” In: Knowledge 
and Information Systems 33.1 (Oct. 2012), pp. 1–33.  



146 | Trustworthy Machine Learning 

independence between the label and protected attribute corresponds to their joint probability being the 
product of their marginal probabilities. This product probability appears in the numerator and the 
actual observed joint probability appears in the denominator of the weight:  

𝑤𝑗 =
𝑝𝑌(𝑦𝑗)𝑝𝑍(𝑧𝑗)

𝑝𝑌,𝑍(𝑦𝑗 , 𝑧𝑗)
. 

Equation 10.8 

Protected attributes are required in the training data to learn the model, but they don’t have to be part 
of the model or the deployment data. 

Whereas data augmentation and reweighing do not change the training data you have from historical 
care management decisions, other methods do. One simple method, only for statistical parity and the 
“we’re all equal” worldview, known as massaging flips unfavorable labels of unprivileged group members 
to favorable labels and favorable labels of privileged group members to unfavorable labels.18 The chosen 
data points are those closest to the decision boundary that have low confidence. Massaging does not 
need to have protected attributes in the deployment data. 

A different approach, the fair score transformer, works on (calibrated) continuous score labels 𝑆 =

𝑝𝑌∣𝑋(𝑌 =  𝑓𝑎𝑣 ∣ 𝑥) rather than binary labels.19 It is posed as an optimization in which you find 
transformed scores 𝑆′ that have small cross-entropy with the original scores 𝑆, i.e. 𝐻(𝑆 ∥ 𝑆′), while 
constraining the statistical parity difference, average odds difference, or other group fairness metrics of 
your choice to be of small absolute value. You convert the pre-processed scores back into binary labels 
with weights to feed into a standard training algorithm. You can take the “what you see is what you get” 
worldview with the fair score transformer because it assumes that the classifier later trained on the pre-
processed dataset is competent, so that the pre-processed score it produces is a good approximation to 
the score predicted by the trained model. Although there are pre-processing methods that alter both the 
labels and (structured or semi-structured) features,20 the fair score transformer proves that you only 
need to alter the labels. It can deal with deployment data that does not come with protected attributes. 

Data augmentation, reweighing, massaging, and fair score transformer all have their own domains 
of competence. Some perform better than others on different fairness metrics and dataset 
characteristics. You’ll have to try different ones to see what happens on the Sospital data.   

 

 
18Faisal Kamiran and Toon Calders. “Data Preprocessing Techniques for Classification without Discrimination.” In: Knowledge 
and Information Systems 33.1 (Oct. 2012), pp. 1–33.  
19Dennis Wei, Karthikeyan Natesan Ramamurthy, and Flavio P. Calmon. “Optimized Score Transformation for Fair Classifica-
tion.” In: Proceedings of the International Conference on Artificial Intelligence and Statistics. Aug. 2020, pp. 1673–1683. 
20Some examples are the methods described in the following three papers. Michael Feldman, Sorelle A. Friedler, John Moeller, 
Carlos Scheidegger, and Suresh Venkatasubramanian. “Certifying and Removing Disparate Impact.” In: Proceedings of the ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney, Australia, Aug. 2015, pp. 259–268. Flavio P. 
Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, and Kush R. Varshney. “Optimized Pre-Pro-
cessing for Discrimination Prevention.” In: Advances in Neural Information Processing Systems 30 (Dec. 2017), pp. 3992–4001. 
Prasanna Sattigeri, Samuel C. Hoffman, Vijil Chenthamarakshan, and Kush R. Varshney. “Fairness GAN: Generating Datasets 
with Fairness Properties Using a Generative Adversarial Network.” In: IBM Journal of Research and Development 63.4/5 (Jul./Sep. 
2019), p. 3. 
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10.5.2 In-Processing 
In-processing bias mitigation algorithms are straightforward to state, but often more difficult to actually 
optimize. The statement is as follows: take an existing risk minimization supervised learning algorithm, 
such as (a repetition of Equation 7.4): 

𝑦̂(∙) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑓∈ℱ

1

𝑛
∑ 𝐿 (𝑦𝑗 , 𝑓(𝑥𝑗))

𝑛

𝑗=1

+ 𝜆𝐽(𝑓) 

Equation 10.9 

and regularize or constrain it using a fairness metric. The algorithm can be logistic regression and the 
regularizer can be statistical parity difference, in which case you have the prejudice remover.21 More 
recent fair learning algorithms are broader and allow for any standard risk minimization algorithm 
along with a broad set of group fairness metrics as constraints that cover the different types of fairness.22 
A recent in-processing algorithm regularizes the objective function using a causal fairness term. Under 
strong ignorability assumptions (remember from Chapter 8 that these are no unmeasured confounders 
and overlap), the regularizer is an average treatment effect-like term 𝐽 =  𝐸[ 𝑌 ∣ 𝑑𝑜(𝑧 = 1), 𝑋 ] −

𝐸[ 𝑌 ∣ 𝑑𝑜(𝑧 = 0), 𝑋 ].23 
Once trained, the resulting models can be used on new unseen Sospital members. These in-

processing algorithms do not require the deployment data to contain the protected attribute. The trick 
with all of them is structuring the bias mitigating regularization term or constraint so that the objective 
function can tractably be minimized through an optimization algorithm.  

10.5.3 Post-Processing 
If you’re in the situation that the Sospital care management model has already been trained and you 
cannot change it or touch the training data (for example if you are purchasing a pre-trained model from 
a vendor to include in your pipeline), then the only option you have is to mitigate unwanted biases using 
post-processing. You can only alter the output predictions 𝑌̂ to meet the group fairness metrics you 
desire based on your worldview (i.e. flipping the predicted labels from receiving care management to 
not receiving care management and vice versa). If you have some validation data with labels, you can 
post-process with the “what you see is what you get” worldview. You can always post-process with the 
“we’re all equal” worldview, with or without validation data. 

 

 
21Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. “Fairness-Aware Classifier with Prejudice Remover 
Regularizer.” In: Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Bristol, Eng-
land, UK, Sep. 2012, pp. 35–50. 
22Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna Wallach. “A Reductions Approach to Fair Clas-
sification.” In: Proceedings of the International Conference on Machine Learning. Stockholm, Sweden, Jul. 2018, pp. 60–69. L. Elisa 
Celis, Lingxiao Huang, Vijay Kesarwani, and Nisheeth K. Vishnoi. “Classification with Fairness Constraints: A Meta-Algorithm 
with Provable Guarantees.” In: Proceedings of the ACM Conference on Fairness, Accountability, and Transparency. Atlanta, Georgia, 
USA, Jan. 2019, pp. 319–328. Ching-Yao Chuang and Youssef Mroueh. “Fair Mixup: Fairness via Interpolation.” In: Proceedings 
of the International Conference on Learning Representations. May 2021. 
23Pietro G. Di Stefano, James M. Hickey, and Vlasios Vasileiou. “Counterfactual Fairness: Removing Direct Effects Through Reg-
ularization.” arXiv:2002.10774, 2020. 
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Since group fairness metrics are computed on average, flipping any random member’s label within 
a group is the same as flipping any other random member’s.24 A random selection of people, however, 
seems to be procedurally unfair. To overcome this issue, similar to massaging, you can prioritize flipping 
the labels of members whose data points are near the decision boundary and are thus low confidence 
samples.25 You can also choose people within a group so that you reduce individual counterfactual 
unfairness.26 All of these approaches require the protected attribute in the deployment data. 

The fair score transformer described in the pre-processing section also has a post-processing 
version, which does not require the protected attribute and should be considered the first choice 
algorithm in the category of post-processing bias mitigation if the base classifier outputs continuous 
scores. It performs well empirically and is not computationally-intensive. Just like the pre-processing 
version, the idea is to find an optimal transformation of the predicted score output into a new score, 
which can then be thresholded to a binary prediction for the final care management decision that 
Sospital makes. 

10.5.4 Conclusion 
All of the different bias mitigation algorithms are options as you’re deciding what to finally do in the care 
management modeling pipeline. The things you have to think about are: 

1. where in the pipeline can you make alterations (this will determine the category pre-, in-, or 
post-processing) 

2. which worldview you’ve decided with the problem owner (this will disallow some algorithms 
that don’t work for the worldview you’ve decided) 

3. whether the deployment data contains the protected attributes (if not, this will disallow some 
algorithms that require them). 

These different decision points are summarized in Table 10.2. After that, you can just go with the 
algorithm that gives you the best quantitative results. But what is best? It is simply the pipeline with the 
best value for the fairness metric you’ve chosen in your problem specification.  

But you might ask, shouldn’t I consider a tradeoff of fairness and accuracy when I choose the 
pipeline? Balancing tradeoffs and relationships among different elements of trustworthy machine 
learning is more fully covered in Chapter 14, but before getting there, it is important to note one 
important point. Even though it is a convenient shortcut, measuring classification accuracy on data from 
the prepared data space, which already contains social bias, representation bias, and data preparation 
bias is not the right thing to do. Just like you should measure performance of distribution shift 
adaptation on data from the new environment—its construct space, you should measure accuracy after 
bias mitigation in its construct space where there is no unfairness. There is a tradeoff between fairness 
and accuracy measured in the prepared data space, but importantly there is no tradeoff between 

 

 
24Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q. Weinberger. “On Fairness and Calibration.” In: Ad-
vances in Neural Information Processing Systems 31 (Dec. 2017), pp. 5684–5693.  
25Faisal Kamiran, Asim Karim, and Xiangliang Zhang. “Decision Theory for Discrimination-Aware Classification.” In: Proceed-
ings of the IEEE International Conference on Data Mining. Brussels, Belgium, Dec. 2012, pp. 924–929. 
26Pranay K. Lohia, Karthikeyan Natesan Ramamurthy, Manish Bhide, Diptikalyan Saha, Kush R. Varshney, and Ruchir Puri. 
“Bias Mitigation Post-Processing for Individual and Group Fairness.” In: IEEE International Conference on Acoustics, Speech, and 
Signal Processing. Brighton, England, UK, May 2019, pp. 2847–2851. 
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accuracy and fairness in the construct space.27 You can approximate a construct space test set by using 
the data augmentation pre-processing method. 

Table 10.2. Characteristics of the main bias mitigation algorithms. 

Algorithm Category Fairness Protected Attributes 
in Deployment Data 

data augmentation pre counterfactual yes 
reweighing pre independence no 
massaging pre independence no 

fair score transformer pre, post independence, separation no 
prejudice remover in independence no 

recent in-processing al-
gorithms 

in independence, separation, 
sufficiency 

no 

causal regularizer in counterfactual no 
group fairness post-pro-

cessing 
post independence, separation yes 

individual and group 
fairness post-processing 

post counterfactual, independ-
ence, separation 

yes 

 
In your Sospital problem, you have almost complete flexibility because you do control the training 

data and model training, are focused on independence and the “we’re all equal” worldview, and are able 
to include protected attributes for Sospital’s members in the deployment data. Try everything, but start 
with the fair score transformer pre-processing. 

 

10.6 Other Considerations 
Before concluding the chapter, let’s consider a couple other issues. The first did not come up in the 
Sospital care management use case, but can come up in other use cases. The Sospital problem lent itself 
to fairness in the context of direct allocation decisions, but that is not the only possibility. There are also 
harms in representation or quality-of-service, such as bias in search results. For example, image 
searches for professions might yield only white people, web search results for personal names 
overrepresented in the black community might be accompanied by advertisements for criminal defense 
attorneys, and natural language processing algorithms for language translation or query understanding 
might associate doctors with men and nurses with women automatically. Some of the bias mitigation 
algorithms for allocative fairness can be used in representational fairness, but different techniques may 
be more appropriate. 

 

 
27Michael Wick, Swetasudha Panda, and Jean-Baptiste Tristan. “Unlocking Fairness: A Trade-Off Revisited.” In: Advances in 
Neural Information Processing Systems 32 (Dec. 2019), pp. 8783–8792. Kit T. Rodolfa, Hemank Lamba, and Rayid Ghani. “Empiri-
cal Observation of Negligible Trade-Offs in Machine Learning for Public Policy.” In: Nature Machine Intelligence 3 (Oct. 2021), pp. 
896–904. 
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“Most of this work is narrow in scope, focusing on fine-tuning specific models, 
making datasets more inclusive/representative, and ‘debiasing’ datasets. Although 
such work can constitute part of the remedy, a fundamentally equitable path must 
examine the wider picture, such as unquestioned or intuitive assumptions in 
datasets, current and historical injustices, and power asymmetries.” 

—Abeba Birhane, cognitive scientist at University College Dublin 

“I continue to worry that in CS (as in psychology), debates about bias have become a 
powerful distraction—drawing attention away from what's most important toward 
what's more easily measurable.” 

—J. Nathan Matias, behavioral scientist at Cornell University 

The second issue is as follows. Have we too easily swept the important considerations of algorithmic 
fairness under the rug of mathematics? Yes and no. If you have truly thought through the different 
sources of inequity arising throughout the machine learning lifecycle utilizing a panel of diverse voices, 
then applying the quantitative metrics and mitigation algorithms is actually pretty straightforward. It is 
straightforward because of the hard work you’ve done before getting to the modeling phase of the 
lifecycle and you should feel confident in going forward. If you have not done the hard work earlier in 
the lifecycle (including problem specification), blindly applying bias mitigation algorithms might not 
reduce harms and can even exacerbate them. So don’t take shortcuts. 

 

10.7 Summary 
▪ Fairness has many forms, arising from different kinds of justice. Distributive justice is the most 

appropriate for allocation decisions made or supported by machine learning systems. It asks for 
some kind of sameness in the outcomes across individuals and groups. 

▪ Unfairness can arise from problem misspecification (including inappropriate proxy labels), 
feature engineering, measurement of features from the construct space to the observed space, 
and sampling of data points from the observed space to the raw data space. 

▪ There are two important worldviews in determining which kind of sameness is most appropriate 
for your problem.  

▪ If you believe there are social biases in measurement (not only representation biases in 
sampling), then you have the “we’re all equal” worldview; independence and statistical parity 
difference are appropriate notions of group fairness.  

▪ If you believe there are no social biases in measurement, only representation biases in sampling, 
then you have the “what you see is what you get” worldview; separation, sufficiency, average odds 
difference, and average predictive value difference are appropriate notions of group fairness. 

▪ If the favorable label is assistive, separation and average odds difference are appropriate notions 
of group fairness. If the favorable label is non-punitive, sufficiency and average predictive value 
difference are appropriate notions of group fairness. 
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▪ Individual fairness is a limiting version of group fairness with finer and finer groups. Worldviews 
play a role in determining distance metrics between individuals. 

▪ Bias mitigation algorithms can be applied as pre-processing, in-processing, or post-processing 
within the machine learning pipeline. Different algorithms apply to different worldviews. The 
choice of algorithm should consider the worldview in addition to  empirical performance. 
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11  
Adversarial Robustness 

Imagine that you are a data scientist at a (fictional) new player in the human resources (HR) analytics 
space named HireRing. The company creates machine learning models that analyze resumes and 
metadata in job application forms to prioritize candidates for hiring and other employment decisions. 
They go in and train their algorithms on each of their corporate clients’ historical data. As a major value 
proposition, the executives of HireRing have paid extra attention to ensuring robustness to distribution 
shift and ensuring fairness of their machine learning pipelines and are now starting to focus their 
problem specification efforts on securing models from malicious acts. You have been entrusted to lead 
the charge in this new area of machine learning security. Where should you begin? What are the different 
threats you need to be worried about? What can you do to defend against potential adversarial attacks? 

Adversaries are people trying to achieve their own goals to the detriment of the goals of HireRing and 
their clients, usually in a secretive way. For example, they may simply want to make the accuracy of an 
applicant prioritization model worse. They may be more sophisticated and want to trick the machine 
learning system into putting some small group of applicants at the top of the priority list irrespective of 
the employability expressed in their features while leaving the model’s behavior unchanged for most 
applicants. 

This chapter teaches you all about defending and certifying the models HireRing builds for its clients 
by: 

▪ distinguishing different threat models based on what the adversary attacks (training data or 
models), their goals, and what they are privy to know and change, 

▪ defending against different types of attacks through algorithms that add robustness to models, 
and 

▪ certifying such robustness of machine learning pipelines. 

The topic of adversarial robustness relates to the other two chapters in this part of the book on 
reliability (distribution shift and fairness) because it also involves a mismatch between the training data 
and the deployment data. You do not know what that difference is going to be, so you have epistemic 
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uncertainty that you want to adapt to or be robust against. In distribution shift, the difference in 
distributions is naturally occurring; in fairness, the difference between a just world and the world we 
live in is because of encompassing societal reasons; in adversarial robustness, the difference between 
distributions is because of a sneaky adversary. Another viewpoint on adversarial attacks is not through 
the lens of malicious actors, but from the lens of probing system reliability—pushing machine learning 
systems to their extremes—by testing them in worst case scenarios. This alternative viewpoint is not the 
framing of the chapter, but you should keep it in the back of your mind and we will return to it in Chapter 
13. 

“In my view, similar to car model development and manufacturing, a comprehensive 
‘in-house collision test’ for different adversarial threats on an AI model should be the 
new norm to practice to better understand and mitigate potential security risks.” 

—Pin-Yu Chen, computer scientist at IBM Research 

HireRing has just been selected by a large (fictional) retail chain based in the midwestern United 
States named Kermis to build them a resume and job application screening model. This is your first 
chance to work with a real client on the problem specification phase for adversarial robustness and not 
take any shortcuts. To start, you need to work through the different types of malicious attacks and decide 
how you can make the HireRing model being developed for Kermis the most reliable and trustworthy it 
can be. Later you’ll work on the modeling phase too. 

 

11.1 The Different Kinds of Adversarial Attacks 
As part of the problem specification phase for the machine learning-based job applicant classifier that 
HireRing is building for Kermis, you have to go in and assess the different threats it is vulnerable to. 
There are three dimensions by which to categorize adversarial attacks.1 (1) Which part of the pipeline is 
being attacked: training or deployment? Attacks on training are known as poisoning attacks, whereas 
attacks on deployment are known as evasion attacks. (2) What capabilities does the attacker have? What 
information about the data and model do they know? What data and models can they change and in what 
way? (3) What is the goal of the adversary? Do they simply want to degrade performance of the resume 
screening model in general or do they have more sophisticated and targeted objectives? These three 
dimensions are similar to the three considerations when picking a bias mitigation algorithm in Chapter 
10 (part of pipeline, presence of protected attributes, worldview). 

A mental model of the different attack types is shown in Figure 11.1. Let’s go through each of the 
dimensions in turn as a sort of checklist to analyze what Kermis should most be worried about and what 
the HireRing model should protect against most diligently.  

 

 
1Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and Debdeep Mukhopadhyay. “Adversarial Attacks 
and Defences: A Survey.” arXiv:1810.00069, 2018. Ximeng Liu, Lehui Xie, Yaopeng Wang, Jian Zou, Jinbo Xiong, Zuobin Ying, 
and Athanasios V. Vasilakos. “Privacy and Security Issues in Deep Learning: A Survey.” In: IEEE Access 9 (Dec. 2021), pp. 4566–
4593. 
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Figure 11.1. A mental model for the different types of adversarial attacks, according to their target, their capa-
bility, and their goal. A hierarchy diagram with adversarial attacks at its root. Adversarial attacks has 
children poisoning and evasion, both of which are in the target dimension. Poisoning has children data 
injection, data modification, and logic corruption, which are in the capability dimension. Evasion has 
children strict closed-box, adaptive closed-box, non-adaptive closed-box, and open-box, which are in 
the capability dimension. Below the hierarchy diagram are items in the goal dimension: confidence 
reduction, misclassification, targeted misclassification, and source/target misclassification, which ap-
ply to the whole diagram. 

11.1.1 Target 
Adversaries may target either the modeling phase or the deployment phase of the machine learning 
lifecycle. By attacking the modeling phase, they can corrupt the training data or model so that it is 
mismatched from the data seen in deployment. These are known as poisoning attacks and have 
similarities with distribution shift, covered in Chapter 9, as they change the statistics of the training data 
or model. Evasion attacks that target the deployment phase are a different beast that do not have a direct 
parallel with distribution shift, but have a loose similarity with individual fairness covered in Chapter 
10. These attacks are focused on altering individual examples (individual resumes) that are fed into the 
machine learning system to be evaluated. As such, modifications to single data points may not affect the 
deployment probability distribution much at all, but can nevertheless achieve the adversary’s goals for 
a given input resume. 

One way to understand poisoning and evasion attacks is by way of the decision boundary, shown in 
Figure 11.2. Poisoning attacks shift the decision boundary in a way that the adversary wants. In contrast, 
evasion attacks do not shift the decision boundary, but shift data points across the decision boundary in 
ways that are difficult to detect. An original data point, the features of the resume 𝑥, shifted by δ becomes 
𝑥 + δ. A basic mathematical description of an evasion attack is the following: 

 

𝑦̂(𝑥 + 𝛿) ≠ 𝑦̂(𝑥) such that ‖𝛿‖ ≤ 𝜖. 

Equation 11.1 
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The adversary wants to find a small perturbation 𝛿 to add to the resume 𝑥 so that the predicted label 
changes (𝑦̂(𝑥 + 𝛿) ≠ 𝑦̂(𝑥)) from select to reject or vice versa. In addition, the perturbation should be 
smaller in length or norm ‖⋅‖ than some small value 𝜖. The choice of norm and value depend on the 
application domain. For semi-structured data modalities, the norm should capture human perception 
so that the perturbed data point and the original data point look or sound almost the same to people.  

 
Figure 11.2. Examples of a poisoning attack (left) and an evasion attack (right). In the poisoning attack, the ad-
versary has injected a new data point, the square with the light border into the training data. This action shifts the 
decision boundary from what it would have been: the solid black line, to something else that the adversary desires: 
the dashed black line. More diamond deployment data points will now be misclassified. In the evasion attack, the 
adversary subtly perturbs a deployment data point across the decision boundary so that it is now misclassified. 
Accessible caption. The stylized plot illustrating a poisoning attack shows two classes of data points 
arranged in a noisy yin yang or interleaving moons configuration and a decision boundary smoothly 
encircling one of the classes with a blob-like region. A poisoning data point with the label of the inside 
of the region is added outside the region. It causes a new decision boundary that puts it inside, while 
also causing the misclassification of another data point. The stylized plot illustrating the evasion attack 
has a data point inside the blob-like region. The attack pushes it outside the region. 

Another way to write the label change 𝑦̂(𝑥 + 𝛿) ≠ 𝑦̂(𝑥) is through the zero-one loss function: 
𝐿(𝑦̂(𝑥), 𝑦̂(𝑥 + 𝛿)) = 1. (Remember that the zero-one loss takes value 0 when both arguments are the same 
and value 1 when the arguments are different.) Because the zero-one loss can only take the two values 0 
and 1, you can also write the adversarial example using a maximum as: 

max
‖𝛿‖≤𝜖

𝐿(𝑦̂(𝑥), 𝑦̂(𝑥 + 𝛿)). 

Equation 11.2 

In this notation, you can also put in other loss functions such as cross-entropy loss, logistic loss, and 
hinge loss from Chapter 7. 
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11.1.2 Capability 
Some adversaries are more capable than others. In the poisoning category, adversaries change the 
training data or model somehow, so they have to have some access inside Kermis’ information 
technology infrastructure. The easiest thing they can do is slip in some additional resumes that get 
added to the training data. This is known as data injection. More challenging is data modification, in which 
the adversary changes labels or features in the existing training dataset. The most challenging of all is 
logic corruption, in which the adversary changes the code and behavior of the machine learning algorithm 
or model. You can think of the data injection and data modification attacks as somewhat similar to bias 
mitigation pre-processing and logic corruption as somewhat similar to bias mitigation in-processing, 
except for a nefarious purpose. 

In the evasion category, the adversary does not need to change anything at all inside Kermis’ 
systems. So these are easier attacks to carry out. The attackers just have to create adversarial examples: 
specially crafted resumes designed in clever ways to fool the machine learning system. But how 
adversaries craft these tricky resumes depends on what information they have about how the model 
makes its predictions. The easiest thing for an adversary to do is just submit a bunch of resumes into 
the HireRing model and see whether they get selected or not; this gives the adversary a labeled dataset. 
When adversaries cannot change the set of resumes and just have to submit a batch that they have, it is 
called strict closed-box access. When they can change the input resumes based on the previous ones 
they’ve submitted and the predicted labels they’ve observed, it is called adaptive closed-box access. 
Adaptivity is a bit harder because the attacker might have to wait a while for Kermis to select or not select 
the resumes that they’ve submitted. You might also be able to catch on that something strange is 
happening over time. The next more difficult kind of information that adversaries can have about the 
HireRing model trained for Kermis is known as non-adaptive closed-box access. Here, the adversary knows 
the training data distribution 𝑝𝑋,𝑌(𝑥, 𝑦) but cannot submit resumes. Finally, the classifier decision 
function itself 𝑦̂(⋅) is the most difficult-to-obtain information about a model for an adversary. This full 
knowledge of the classifier is known as open-box access. 

Since Kermis has generally good cybersecurity overall, you should be less worried about poisoning 
attacks, especially logic corruption attacks. Even open-box access for an evasion attack seems less 
likely. Your biggest fear should be one of the closed-box evasion attacks. Nevertheless, you shouldn’t let 
your guard down and you should still think about defending against all of the threats. 

11.1.3 Goal 
The third dimension of threats is the goal of the adversary, which applies to both poisoning and evasion 
attacks. Different adversaries try to do different things. The easiest goal is confidence reduction: to shift 
classifier scores so that they are closer to the middle of the range [0,1] and thus less confident. The next 
goal is misclassification: trying to get the classifier to make incorrect predictions. (This is the formulation 
given in Equation 11.1.) Job applications to Kermis that should be selected are rejected and vice versa. 
When you have a binary classification problem like you do in applicant screening, there is only one way 
to be wrong: predicting the other label. However, when you have more than two possible labels, 
misclassification can produce any other label that is not the true one. Targeted misclassification goes a 
step further and ensures that the misclassification isn’t just any other label, but a specific one of the 
attacker’s choice. Finally, and most sophisticated of all, source/target misclassification attacks are 



Adversarial Robustness | 157 

designed so that misclassification only happens for some input job applications and the label of the 
incorrect prediction also depends on the input. Backdoor or Trojan attacks are an example of 
source/target misclassification in which a small subset of inputs (maybe ones whose resumes include 
some special keyword) trigger the application to be accepted. The more sophisticated goals are harder 
to pull off, but also the most dangerous for Kermis and HireRing if successful. The problem specification 
should include provisions to be vigilant for all these different goals of attacks. 

 

11.2 Defenses Against Poisoning Attacks 
Once you and the HireRing team are in the modeling phase of the lifecycle, you have to implement 
defense measures against the attacks identified in the problem specification phase. From a machine 
learning perspective, there are no specific defenses for preventing logic corruption attacks in Kermis’ 
systems. They must be prevented by other security measures. There are, however, defenses throughout 
the machine learning pipeline against data injection and data modification attacks that fall into three 
categories based on where in the pipeline they are applied.2 (1) Pre-processing approaches are given the 
name data sanitization. (2) In-processing defenses during model training rely on some kind of smoothing. 
(3) Post-processing defenses are called patching. These three categories, which are detailed in the 
remainder of this section, are illustrated in Figure 11.3. They are analogous to methods for mitigating 
distribution shift and unwanted bias described in Chapter 9 and Chapter 10, respectively. 

 
Figure 11.3. Different categories of defenses against poisoning attacks in the machine learning pipeline. Accessi-
ble caption. A block diagram with a training dataset as input to a data sanitization block with a pre-pro-
cessed dataset as output. The pre-processed dataset is input to a smoothing block with an initial model 
as output. The initial model is input to a patching block with a final model as output.  

Machine learning defenses against poisoning attacks are an active area of research. Specific attacks 
and defenses are continually improving in an arms race. Since by the time this book comes out, all 
presently known attacks and defenses are likely to have been superseded, only the main ideas are given 
rather than in-depth accounts. 

11.2.1 Data Sanitization 
The main idea of data sanitization is to locate the nefarious resumes that have been injected into or 
modified in the Kermis dataset and remove them. Such resumes tend to be anomalous in some fashion, 
so data sanitization reduces to a form of anomaly or outlier detection. The most common way to detect 

 

 
2Micah Goldblum, Dmitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song, Aleksander Mądry, Bo Li, and 
Tom Goldstein. “Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks, and Defenses.” arXiv:2012.10544, 
2021.  
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outliers, robust statistics, is as follows. The set of outliers is assumed to have small cardinality compared 
to the clean, unpoisoned training resumes. The two sets of resumes, poison and clean, are differentiated 
by having differing means normalized by their variances. Recent methods are able to differentiate the 
two sets efficiently even when the number of features is large.3 For high-dimensional semi-structured 
data, the anomaly detection should be done in a representation space rather than in the original input 
feature space. Remember from Chapter 4 that learned representations and language models compactly 
represent images and text data, respectively, using the structure they contain. Anomalies are more 
apparent when the data is well-represented. 

11.2.2 Smoothing 
When HireRing is training the Kermis classifier, defenses against data poisoning make the model more 
robust by smoothing the score function. The general idea is illustrated in Figure 11.4, which compares 
a smooth and less smooth score function. By preferring smooth score functions during training, there is 
a lower chance for adversaries to succeed in their attacks. 

 
Figure 11.4. A comparison of a smooth (left) and less smooth (right) score function. The value of the score function 
is indicated by shading: it is 0 where the shading is white and 1 where the shading is black. The decision boundary, 
where the score function takes value 0.5 is indicated by red lines. The less smooth score function may have been 
attacked. Accessible caption. Stylized plot showing a decision boundary smoothly encircling one of the 
classes with a blob-like region. The underlying score function is indicated by shading, becoming 
smoothly whiter in the inside the region and smoothly blacker outside the region. This is contrasted 
with another decision boundary that has some tiny enclaves of the opposite class inside the blob-like 
region. Its underlying score function is not smooth. 

Smoothing can be done, for example, by applying a k-nearest neighbor prediction on top of another 
underlying classifier. By doing so, the small number of poisoned resumes are never in the majority of a 

 

 
3Pang Wei Koh, Jacob Steinhardt, and Percy Liang. “Stronger Data Poisoning Attacks Break Data Sanitization Defenses.” In: 
Machine Learning (Nov. 2021).  
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neighborhood and their effect is ignored. Any little shifts in the decision boundary stemming from the 
poisoned data points are removed. Another way to end up with a smooth score function, known as 
gradient shaping, is by directly constraining or regularizing its slope or gradient within the learning 
algorithm. When the magnitude of the gradient of a decision function is almost the same throughout the 
feature space, it is resilient to perturbations caused by a small number of anomalous points: it is more 
like the left score function in Figure 11.4 than the right score function. Smoothing can also be 
accomplished by averaging together the score functions of several independent classifiers. 

11.2.3 Patching 
Patching, primarily intended for neural network models, mitigates the effect of backdoor attacks as a 
post-processing step. Backdoors show up as anomalous edge weights and node activations in neural 
networks. There is something statistically weird about them. Say that you have already trained an initial 
model on a poisoned set of Kermis job applications that has yielded a backdoor. The idea of the patching 
is similar to how you fix a tear in a pair of pants. First you ‘cut’ the problem out of the ‘fabric’: you prune 
the anomalous neural network nodes. Then you ‘sew’ a patch over it: you fine-tune the model with some 
clean resumes or a set of resumes generated to approximate a clean distribution.  

 

11.3 Defenses Against Evasion Attacks 
Evasion attacks are logistically simpler to carry out than poisoning attacks because they do not require 
the adversary to infiltrate Kermis’ information technology systems. Adversaries only have to create 
examples that look realistic to avoid suspicion and submit them as regular job applications. Defending 
against these attacks can be done in two main ways: (1) denoising and (2) adversarial training. The first 
category of defenses is outside the machine learning training pipeline and applies at deployment. It tries 
to subtract off the perturbation 𝛿 from a deployment-time resume 𝑥 + 𝛿 when it exists. (Only a small 
number of input resumes will be adversarial examples and have a 𝛿.) This first category is known as 
denoising; the reason will become apparent in the next section. The second category of defenses occurs 
in the modeling pipeline and builds min-max robustness into the model itself, similar to training models 
robust to distribution shift in Chapter 9. It is known as adversarial training. There is no evasion defense 
category analogous to adaptation or bias mitigation pre-processing of training data from Chapter 9 and 
Chapter 10, respectively, because evasion attacks are not founded in training data distributions. The 
defenses to evasion attacks are summarized in Figure 11.5. Let’s learn more about implementing these 
defenses in the HireRing job applicant prioritization system. 
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Figure 11.5. Different defenses against evasion attacks. Accessible caption. A hierarchy diagram with de-
fenses against evasion attacks at its root, which has denoising and adversarial training as its children. 
Denoising has children input domain, frequency domain, and latent domain. 

11.3.1 Denoising Input Data 
Despite the best efforts of attackers, adversarial examples—resumes that have been shifted across a 
decision boundary—contain signals noticeable by machines even though they are imperceptible for 
people. The specially-crafted perturbation 𝛿 is a form of noise, called adversarial noise. Denoising, 
attempting to remove 𝛿 from 𝑥 + 𝛿, is a type of defense. The challenge in denoising is to remove all of the 
noise while limiting the distortion to the underlying clean features.  

Noise removal is an old problem that has been addressed in signal processing and related fields for 
a long time. There are three main ways of denoising evasion attacks that differ in their representation of 
the data: (1) input domain, (2) frequency domain, and (3) latent domain.4 Denoising techniques working 
directly in the feature space or input domain may copy or swap feature values among neighboring data 
points. They may also quantize continuous values into a smaller set of discrete values. Taking advantage 
of recent advances in generative machine learning (briefly described in Chapter 4 in the context of data 
augmentation), they may generate data samples very similar to an input, but without noise. Taken 
together, the main idea for input domain denoising is to flatten the variability or smooth out the data 
values.  

Smoothing is better examined in the frequency domain. If you are not an electrical engineer, you 
might not have heard about converting data into its frequency domain representation. The basic idea is 
to transform the data so that very wiggly data yields large values at so-called high frequencies and very 
smooth data yields large values at the opposite end of the spectrum: low frequencies. This conversion is 
done using the Fourier transform and other similar operations. Imperceptible adversarial noise is 
usually concentrated at high frequencies. Therefore, a defense for evasion attacks is squashing the high 
frequency components of the data (replacing them with small values) and then converting the data back 
to the input domain. Certain data compression techniques for semi-structured data modalities 
indirectly accomplish the same thing. 

 

 
4Zhonghan Niu, Zhaoxi Chen, Linyi Li, Yubin Yang, Bo Li, and Jinfeng Yi. “On the Limitations of Denoising Strategies as Adver-
sarial Defenses.” arXiv:2012.09384, 2020.  
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If your machine learning model is a neural network, then the values of the data as it passes through 
intermediate layers constitute a latent representation. The third denoising category works in this latent 
representation space. Like in the frequency domain, this category also squashes the values in certain 
dimensions. However, these techniques do not simply assume that the adversarial noise is concentrated 
in a certain part of the space (e.g. high frequencies), but learn these dimensions using clean job 
applications and their corresponding adversarial examples that you create.  

11.3.2 Adversarial Training 
The second main category of defenses against evasion attacks is adversarial training. It is a form of min-
max robustness,5 which you first encountered in Chapter 9 in the context of distribution shift. 
Remember that the min-max idea is to do the best you can on the worst-case scenario. In adversarial 
training, the minimization and maximization are as follows. The minimization is to find the best job 
applicant classifier in the hypothesis space, just like any other risk minimization approach to machine 
learning. The inner maximization is to find the worst-case perturbations of the resumes. The 
mathematical form of the objective is: 

𝑦̂(⋅) = argmin
𝑓∈ℱ

∑ max
‖𝛿𝑗‖≤𝜖

𝐿 (𝑦𝑗 , 𝑓(𝑥𝑗 + 𝛿𝑗))

𝑛

𝑗=1

. 

Equation 11.3 

Notice that the inner maximization is the same expression as finding adversarial examples given in 
Equation 11.2. Thus, to carry out adversarial training, all you have to do is produce adversarial examples 
for the Kermis training resumes and use those adversarial examples as a new training data set in a 
typical machine learning algorithm. HireRing must become a good attacker to become a good defender. 

11.3.3 Evaluating and Certifying Robustness to Evasion Attacks 
Once the HireRing job applicant screening system has been adversarially trained on Kermis resumes, 
how do you know it is any good? There are two main ways to measure the model’s robustness: (1) 
empirically and (2) characterizing the score function. As an empirical test, you create your own 
adversarial example resumes, feed them in, and compute how often the adversarial goal is met 
(confidence reduction, misclassification, targeted misclassification, or source/target misclassification). 
You can do it because you know the ground truth of which input resumes contain an adversarial 
perturbation and which ones don’t. Such empirical robustness evaluation is tied to the specific attack 
and its capabilities (open-box or closed-box) since you as the evaluator are acting as the adversary. 

 

 
5Aleksander Mądry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. “Towards Deep Learning Mod-
els Resistant to Adversarial Attacks.” In: Proceedings of the International Conference on Learning Representations. Vancouver, Can-
ada, Apr.–May 2018. 
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In contrast, a way to characterize the adversarial robustness of a classifier that is agnostic to the 
evasion attack is the CLEVER score.6 An acronym for cross-Lipschitz extreme value for network 
robustness, the CLEVER score (indirectly) analyzes the distance from a job application data point to the 
classifier decision boundary. Misclassification attacks will be unsuccessful if this distance is too far 
because it will exceed 𝜖, the bound on the norm of the perturbation 𝛿. The higher the CLEVER score, the 
more robust the model. Generally speaking, smooth, non-complicated decision boundaries without 
many small islands (like the left score function in Figure 11.4) have large distances from data points on 
average, have large average CLEVER scores, and are robust to all kinds of evasion attacks. In the problem 
specification phase with the Kermis problem owners, you can set an acceptable minimum value for the 
average CLEVER score. If the model achieves it, HireRing can confidently certify a level of security and 
robustness.  

 

11.4 Summary 
▪ Adversaries are actors with bad intentions who try to attack machine learning models by 

degrading their accuracy or fooling them. 

▪ Poisoning attacks are implemented during model training by corrupting either the training data 
or model. 

▪ Evasion attacks are implemented during model deployment by creating adversarial examples 
that appear genuine, but fool models into making misclassifications. 

▪ Adversaries may just want to worsen model accuracy in general or may have targeted goals that 
they want to achieve, such as obtaining specific predicted labels for specific inputs. 

▪ Adversaries have different capabilities of what they know and what they can change. These 
differences in capabilities and goals determine the threat. 

▪ Defenses for poisoning attacks take place at different parts of the machine learning pipeline: data 
sanitization (pre-processing), smoothing (model training), and patching (post-processing). 

▪ Defenses for evasion attacks include denoising that attempts to remove adversarial 
perturbations from inputs and adversarial training which induces min-max robustness. 

▪ Models can be certified for robustness to evasion attacks using the CLEVER score. 

▪ Even without malicious actors, adversarial attacks are a way for developers to test machine 
learning systems in worst case scenarios. 

 

 
6Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, and Luca Daniel. “Evaluating the 
Robustness of Neural Networks: An Extreme Value Theory Approach.” In: Proceedings of the International Conference on Learning 
Representations. Vancouver, Canada, Apr.–May 2018. 
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12  
Interpretability and Explainability 

Hilo is a (fictional) startup company trying to shake up the online second home mortgage market. A type 
of second mortgage known as a home equity line of credit (HELOC) allows customers to borrow 
intermittently using their house as collateral. Hilo is creating several unique propositions to 
differentiate itself from other companies in the space. The first is that it integrates the different 
functions involved in executing a second mortgage, including a credit check of the borrower and an 
appraisal of the value of the home, in one system. Second, its use of machine learning throughout these 
human decision-making processes is coupled with a maniacal focus on robustness to distribution shift, 
fairness, and adversarial robustness. Third, it has promised to be scrutable to anyone who would like to 
examine the machine learning models it will use and to provide avenues for recourse if the machine’s 
decisions are problematic in any respect. Imagine that you are on the data science team assembled by 
Hilo and have been tasked with addressing the third proposition by making the machine learning 
models interpretable and explainable. The platform’s launch date is only a few months away, so you had 
better get cracking. 

Interpretability of machine learning models is the aim to let people understand how the machine 
makes its predictions. It is a challenge because many of the machine learning approaches in Chapter 7 
are not easy for people to understand since they have complicated functional forms. Interpretability and 
explainability are a form of interaction between the machine and a human, specifically communication 
from the machine to the human, that allow the machine and human to collaborate in decision making.1 
This topic and chapter lead off Part 5 of the book on interaction, which is the third attribute of 
trustworthiness of machine learning. Remember that the organization of the book matches the 
attributes of trustworthiness, shown in Figure 12.1. 

 

 

 
1Ben Green and Yiling Chen. “The Principles and Limits of Algorithm-in-the-Loop Decision Making.” In: Proceedings of the ACM 
Conference on Computer-Supported Cooperative Work and Social Computing. Austin, Texas, USA, Nov. 2019, p. 50. 
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Figure 12.1. Organization of the book. The fifth part focuses on the third attribute of trustworthiness, intimacy 
or interaction, which maps to machine learning models that can communicate with people and receive instruction 
from people about their values. Accessible caption. A flow diagram from left to right with six boxes: part 1: 
introduction and preliminaries; part 2: data; part 3: basic modeling; part 4: reliability; part 5: interac-
tion; part 6: purpose. Part 5 is highlighted. Parts 3–4 are labeled as attributes of safety. Parts 3–6 are 
labeled as attributes of trustworthiness. 

The typical output of a machine learning model is the predicted label 𝑌̂, but this label is not enough 
to communicate how the machine makes its predictions. Something more, in the form of an explanation, 
is also needed. The machine is the transmitter of information and the human is the receiver or consumer 
of that information. As shown in Figure 12.2, the communication process has to overcome human 
cognitive biases—the limitations that people have in receiving information—that threaten human-
machine collaboration. This is sometimes known as the last mile problem.2 The figure completes the 
picture of biases and validities you’ve seen starting in Chapter 4. The final space is the perceived space, 
which is the final understanding that the human consumer has of the predictions from Hilo’s machine 
learning models.  

You will not be able to create a single kind of explanation that appeals to all of the different potential 
consumers of explanations for Hilo’s models. Even though the launch date is only a few months away, 
don’t take the shortcut of assuming that any old explanation will do. The cognitive biases of different 
people are different based on their persona, background, and purpose. As part of the problem 
specification phase of the machine learning lifecycle, you’ll first have to consider all the different types 
of explanations at your disposal before going into more depth on any of them during the modeling phase.  

 

12.1 The Different Types of Explanations 
Just like we as people have many ways to explain things to each other, there are many ways for machine 
learning models to explain their predictions to consumers. As you consider which ones you’ll need for 
Hilo’s models, you should start by enumerating the personas of consumers.  

 

 

 
2James Guszcza. “The Last-Mile Problem: How Data Science and Behavioral Science Can Work Together.” In: Deloitte Review 16 
(2015), pp. 64–79. 
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Figure 12.2. A mental model of spaces, validities, and biases. The final space is the perceived space, which is what 
the human understands from the machine’s output. Accessible caption. A sequence of six spaces, each rep-
resented as a cloud. The construct space leads to the observed space via the measurement process. 
The observed space leads to the raw data space via the sampling process. The raw data space leads to 
the prepared data space via the data preparation process. The prepared data space leads to the predic-
tion space via the modeling process. The prediction space leads to the perceived space via the commu-
nication process. The measurement process contains social bias, which threatens construct validity. 
The sampling process contains representation bias and temporal bias, which threatens external valid-
ity. The data preparation process contains data preparation bias and data poisoning, which threaten 
internal validity. The modeling process contains underfitting/overfitting and poor inductive bias, 
which threaten generalization. The communication process contains cognitive bias, which threatens 
human-machine collaboration. 

12.1.1 Personas of the Consumers of Explanations 
The first consumer is the decision maker who collaborates with the machine learning system to make the 
prediction: the appraiser or credit officer. These consumers need to understand and trust the model and 
have enough information about machine predictions to combine with their own inclinations to produce 
the final decision. The second consumer persona is the HELOC applicant. This affected user would like to 
know the factors that led to their model-predicted home appraisal and creditworthiness, and what they 
can do to improve these predictions. The third main persona of consumers is an internal compliance 
official or model validator, or an official from an external regulatory agency that ensures that the 
decisions are not crossing any legal boundaries. Together, all of these roles are regulators of some sort. 
The fourth possible consumer of explanations is a data scientist in your own team at Hilo. Explanations 
of the functioning of the models can help a member of your team debug and improve the models.  

“If we don’t know what is happening in the black box, we can’t fix its mistakes to 
make a better model and a better world.”  

—Aparna Dhinakaran, chief product officer at Arize AI 

Note that unlike the other three personas, the primary concern of the data scientist persona is not 
building interaction and intimacy for trustworthiness. The four different personas and their goals are 
summarized in Table 12.1. 
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Table 12.1. The four main personas of consumers of explanations and their goals. 

Persona Example Goal 
decision 
maker 

appraiser, credit officer (1) roughly understand the model to gain trust;  
(2) understand the predictions to combine with 

their own information to make decisions 
affected user HELOC applicant understand the prediction for their own input 

data point and what they can do to change the 
outcome 

regulator model validator, govern-
ment official 

ensure the model is safe and compliant 

data scientist Hilo team member improve the model’s performance 
 

12.1.2 Dichotomies of Explanation Methods 
To meet the goals of the different personas, one kind of explanation is not enough.3 You’ll need several 
different explanation types for Hilo’s systems. There are three dichotomies that delineate the methods 
and techniques for machine learning explainability.  

▪ The first dichotomy is local vs. global: is the consumer interested in understanding the machine 
predictions for individual input data points or in understanding the model overall.  

▪ The second dichotomy is exact vs. approximate: should the explanation be completely faithful to 
the underlying model or is some level of approximation allowable.  

▪ The third dichotomy is feature-based vs. sample-based: is the explanation given as a statement about 
the features or is it given by pointing to other data points in their entirety. Feature-based 
explanations require that the underlying features be meaningful and understandable by the 
consumer. If they are not already meaningful, a pre-processing step known as disentangled 
representation may be required. This pre-processing finds directions of variation in semi-
structured data that are not necessarily aligned to the given features but have some human 
interpretation, and is expanded upon in Section 12.2.  

Since there are three dichotomies, there are eight possible combinations of explanation types. 
Certain types of explanations are more appropriate for certain personas to meet their goals. The fourth 
persona, data scientists from your own team at Hilo, may need to use any and all of the types of 
explanations to debug and improve the model.  

▪ Local, exact, feature-based explanations help affected users such as HELOC applicants gain 
recourse and understand precisely which feature values they have to change in order to pass the 
credit check.  

▪ Global and local approximate explanations help decision makers such as appraisers and credit 

 

 
3Vijay Arya, Rachel K. E. Bellamy, Pin-Yu Chen, Amit Dhurandhar, Michael Hind, Samuel C. Hoffman, Stephanie Houde, Q. Vera 
Liao, Ronny Luss, Aleksandra Mojsilović, Sami Mourad, Pablo Pedemonte, Ramya Raghavendra, John Richards, Prasanna 
Sattigeri, Karthikeyan Shanmugam, Moninder Singh, Kush R. Varshney, Dennis Wei, and Yunfeng Zhang. “One Explanation 
Does Not Fit All: A Toolkit and Taxonomy of AI Explainability Techniques.” arXiv:1909.03012, 2019. Q. Vera Liao and Kush R. 
Varshney. “Human-Centered Explainable AI (XAI): From Algorithms to User Experiences.” arXiv:2110.10790, 2021. 
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officers achieve their dual goals of roughly understanding how the overall model works to 
develop trust in it (global) and having enough information about a machine-predicted property 
value to combine with their own information to produce a final appraisal (local).  

▪ Global and local, exact, sample-based explanations and global, exact, feature-based explanations 
help regulators understand the behavior and predictions of the model as a safeguard. By being 
exact, the explanations apply to all data points, including edge cases that might be washed out in 
approximate explanations. Of these, the local, exact, sample-based and global, exact, feature-
based explanations that appeal to regulators come from directly interpretable models.  

▪ Regulators and decision makers can both benefit from global, approximate, sample-based 
explanations to gain understanding. 

The mapping of explanation types to personas is summarized in Table 12.2.  

Table 12.2. The three dichotomies of explanations and their mapping to personas. 

Dichotomy 1 Dichotomy 2 Dichotomy 3 Persona Example Method 
local exact feature-

based 
affected user contrastive explanations 

method 
local exact sample-

based 
regulator  k-nearest neighbor 

local approxi-
mate 

feature-
based 

decision maker LIME, SHAP, saliency map 

local approxi-
mate 

sample-
based 

decision maker prototype 

global exact feature-
based 

regulator decision tree, Boolean rule 
set, logistic regression, 

GAM, GLRM 
global exact sample-

based 
regulator deletion diagnostics 

global approxi-
mate 

feature-
based 

decision maker distillation, SRatio, partial 
dependence plot 

global approxi-
mate 

sample-
based 

regulator and de-
cision maker 

influence function 

 
Another dichotomy that you might consider in the problem specification phase is whether you will 

allow the explanation consumer to interactively probe the Hilo machine learning system to gain further 
insight, or whether the system will simply produce static output explanations that the consumer cannot 
further interact with. The interaction can be through natural language dialogue between the consumer 
and the machine, or it could be by means of visualizations that the consumer adjusts and drills down 
into.4 The variety of static explanations is already plenty for you to deal with without delving into 
interaction, so you decide to proceed only with static methods. 

 

 
4Josua Krause, Adam Perer, and Kenney Ng. “Interacting with Predictions: Visual Inspection of Black-Box Machine Learning 
Models.” In: Proceedings of the CHI Conference on Human Factors in Computing Systems. San Jose, California, USA, May 2016, pp. 
5686–5697. 
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 Mirroring the three points of intervention in the modeling pipeline seen in Part 4 of the book for 
distributional robustness, fairness, and adversarial robustness, Figure 12.3 shows different actions for 
interpretability and explainability. As mentioned earlier, disentangled representation is a pre-
processing step. Directly interpretable models arise from training decision functions in specific 
constrained hypothesis classes (recall that the concept of hypothesis classes was introduced in Chapter 
7). Finally, many methods of explanation are applied on top of already-trained, non-interpretable 
models such as neural networks in a post hoc manner. 

 
Figure 12.3. Pipeline view of explanation methods. Accessible caption. A block diagram with a training da-
taset as input to a disentangled representation block with a pre-processed dataset as output. The pre-
processed dataset is input to a directly interpretable model block with an initial model as output. The 
initial model is input to a post hoc explanation block with a final model as output. 

12.1.3 Conclusion 
Now you have the big picture view of different explanation methods, how they help consumers meet 
their goals, and how they fit into the machine learning pipeline steps. The appraisal and HELOC approval 
systems you’re developing for Hilo require you to appeal to all of the different consumer types, and you 
have the ability to intervene on all parts of the pipeline, so you should start putting together a 
comprehensive toolkit of interpretable and explainable machine learning techniques. 

 

12.2 Disentangled Representation 
Before people can start understanding how models make their predictions, they need some 
understanding of the underlying data. Features in tabular and other structured data used as inputs to 
machine learning models can usually be understood by consumers in some capacity. Consumers who 
are not decision makers, regulators, or other domain experts (or even if they are) might not grasp the 
nuance of every feature, but they can at least consult a data dictionary to get some understanding of each 
one. For example, in the HELOC approval model, a feature ‘months since most recent delinquency’ 
might not make total sense to applicants, but it is something they can understand if they do some 
research about it. 

The same is not true of semi-structured data. For example, inputs to the home appraisal model 
include satellite and street view images of the property and surrounding neighborhood. The features are 
individual red, blue, and green color values for each pixel of the image. Those features are not 
meaningful to any consumer. They are void of semantics. Higher-level representations, for example 
edges and textures that are automatically learned by neural networks, are a little better but still leave an 
explanation consumer wanting. They do not directly have a meaning in the context of a home appraisal.  

What can be done instead? The answer is a representation in which the dimensions are the amount 
of foliage in the neighborhood, the amount of empty street frontage, the visual desirability of the house, 
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etc.5 that are uncorrelated with each other and also provide information not captured in other input data. 
(For example, even though the size and number of floors of the home could be estimated from images, 
it will already be captured in other tabular data.) Such a representation is known as a disentangled 
representation. The word disentangled is used because in such a representation, intervening on one 
dimension does not cause other dimensions to also change. Recently developed methods can learn 
disentangled representations directly from unlabeled data.6 Although usually not the direct objective of 
disentangling, such representations tend to yield meaningful dimensions that people can provide 
semantics to, such as the example of ‘foliage in the neighborhood’ mentioned above. Therefore, 
disentangled representation is a way of pre-processing the training data features to make them more 
human-interpretable. Modeling and explanation methods later in the pipeline take the new features as 
input. 

Sometimes, disentangled representation to improve the features is not good enough to provide 
meaning to consumers. Similarly, sometimes tabular data features are just not sufficient to provide 
meaning to a consumer. In these cases, an alternative pre-processing step is to directly elicit meaningful 
explanations from consumers, append them to the dataset as an expanded cardinality label set, and 
train a model to predict both the original appraisal or creditworthiness as well as the explanation.7 

 

12.3 Explanations for Regulators 
Directly interpretable models are simple enough for consumers to be able to understand exactly how 
they work by glancing at their form. They are appropriate for regulators aiming for model safety. They 
are a way to reduce epistemic uncertainty and achieve inherently safe design: models that do not have any 
spurious components.8 The explanation is done by restricting the hypothesis class from which the 
decision function is drawn to only those functions that are simple and understandable. There are two 
varieties of directly interpretable exact models: (1) local sample-based and (2) global feature-based. 
Moreover, model understanding by regulators is enhanced by global sample-based explanations, both 
exact and approximate. 

12.3.1 k-Nearest Neighbor Classifier 
The k-nearest neighbor classifier introduced in Chapter 7 is the main example of a local sample-based 
directly interpretable model. The predicted creditworthiness or appraisal label is computed as the 
average label of nearby training data points. Thus, a local explanation for a given input data point is just 
the list of the k-nearest neighbor samples, including their labels. This list is simple enough for regulators 
to understand. You can also provide the distance metric for additional understanding. 

 

 
5Stephen Law, Brooks Paige, and Chris Russell. “Take a Look Around: Using Street View and Satellite Images to Estimate House 
Prices.” In: ACM Transactions on Intelligent Systems and Technology 10.5 (Nov. 2019), p. 54.  
6Xinqi Zhu, Chang Xu, and Dacheng Tao. “Where and What? Examining Interpretable Disentangled Representations.” In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Jun. 2021, pp. 5857–5866. 
7Michael Hind, Dennis Wei, Murray Campbell, Noel C. F. Codella, Amit Dhurandhar, Aleksandra Mojsilović, Karthikeyan Nate-
san Ramamurthy, and Kush R. Varshney. “TED: Teaching AI to Explain its Decisions.” In: Proceedings of the AAAI/ACM Conference 
on AI, Ethics, and Society. Honolulu, Hawaii, USA, Jan. 2019, pp. 123–129.  
8Kush R. Varshney and Homa Alemzadeh. “On the Safety of Machine Learning: Cyber-Physical Systems, Decision 
Sciences, and Data Products.” In: Big Data 5.3 (Sep. 2017), pp. 246–255.  
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12.3.2 Decision Trees and Boolean Rule Sets 
There is more variety in global feature-based directly interpretable models. Decision trees, introduced 
in Chapter 7, can be understood by regulators by tracing paths from the root through intermediate nodes 
to leaves containing predicted labels.9 The individual features and thresholds involved in each node are 
explicit and well-understood. A hypothesis class similar to decision trees is Boolean rule sets (OR-of-
AND rules and AND-of-OR rules) that people are able to comprehend directly. They are combinations of 
decision stumps or one-rules introduced in Chapter 7. An example of an OR-of-AND rule classifier for 
HELOC creditworthiness is one that predicts the applicant to be non-creditworthy if:10 

▪ (Number of Satisfactory Trades ≤ 17 AND External Risk Estimate ≤ 75) OR 

▪ (Number of Satisfactory Trades > 17 AND External Risk Estimate ≤ 72). 

This is a very compact rule set in which regulators can easily see the features involved and their 
thresholds. They can reason that the model is more lenient on external risk when the number of 
satisfactory trades is higher. They can also reason that the model does not include any objectionable 
features. (Once decision trees or Boolean rule sets become too large, they start becoming less 
interpretable.)  

One common refrain that you might hear is of a tradeoff between accuracy and interpretability. This 
argument is false.11 Due to the Rashomon effect introduced in Chapter 9, many kinds of models, 
including decision trees and rule sets, have almost equally high accuracy on many datasets. The domain 
of competence for decision trees and rule sets is broad (recall that the domain of competence introduced 
in Chapter 7 is the set of dataset characteristics on which a type of model performs well compared to 
other models). While it is true that scalably training these models has traditionally been challenging due 
to their discrete nature (discrete optimization is typically more difficult than continuous optimization), 
the challenges have recently been overcome.12  

“Simplicity is not so simple.” 

—Dmitry Malioutov, computer scientist at IBM Research 

When trained using advanced discrete optimization, decision trees and Boolean rule set classifiers show 
competitive accuracies across many datasets. 

 

 
9It is important to note that interpretability is about consumers understanding how the model makes its predictions, but not 
necessarily why. Consumers can supplement the how with the why based on their common-sense knowledge. 
10The example HELOC explanations throughout the chapter are based on the tutorial https://github.com/Trusted-
AI/AIX360/blob/master/examples/tutorials/HELOC.ipynb and demonstration http://aix360.mybluemix.net/data developed by 
Vijay Arya, Amit Dhurandhar, Q. Vera Liao, Ronny Luss, Dennis Wei, and Yunfeng Zhang. 
11Cynthia Rudin. “Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models 
Instead.” In: Nature Machine Intelligence 1.5 (May 2019), pp. 206–215. 
12Oktay Günlük, Jayant Kalagnanam, Minhan Li, Matt Menickelly, and Katya Scheinberg. “Optimal Generalized Decision Trees 
via Integer Programming.” arXiv:1612.03225, 2019. Sanjeeb Dash, Oktay Günlük, and Dennis Wei. “Boolean Decision Rules via 
Column Generation.” In: Advances in Neural Information Processing Systems 31 (Dec. 2018), pp. 4655–4665. 
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12.3.3 Logistic Regression 
Linear logistic regression is also considered by many regulators to be directly interpretable. Recall from 
Chapter 7 that the form of the linear logistic regression decision function is 𝑦̂(𝑥) = step(𝑤𝑇𝑥). The 𝑑-
dimensional weight vector 𝑤 has one weight per feature dimension in 𝑥, which are different attributes 
of the HELOC applicant. These weight and feature dimensions are 𝑤(1), … , 𝑤(𝑑) and 𝑥(1), … , 𝑥(𝑑), 
respectively, which get multiplied and summed as: 𝑤(1)𝑥(1) + ⋯ + 𝑤(𝑑)𝑥(𝑑) before going into the step 
function. In logistic regression, the relationship between the probability 𝑃( 𝑌̂ = 1 ∣∣ 𝑋 = 𝑥 ) (also the score 
𝑠) and the weighted sum of feature dimensions is:  

𝑃( 𝑌̂ = 1 ∣∣ 𝑋 = 𝑥 ) =
1

1 + 𝑒−(𝑤(1)𝑥(1)+⋯+𝑤(𝑑)𝑥(𝑑))
, 

Equation 12.1 

which you’ve seen before as the logistic activation function for neural networks in Chapter 7. It can be 
rearranged to the following: 

log (
𝑃( 𝑌̂ = 1 ∣∣ 𝑋 = 𝑥 )

1 − 𝑃( 𝑌̂ = 1 ∣∣ 𝑋 = 𝑥 )
) = 𝑤(1)𝑥(1) + ⋯ + 𝑤(𝑑)𝑥(𝑑). 

Equation 12.2 

The left side of Equation 12.2 is called the log-odds. When the log-odds is positive, 𝑌̂ = 1 is the more likely 
prediction: creditworthy. When the log-odds is negative, 𝑌̂ = 0 is the more likely prediction: non-
creditworthy. 

The way to understand the behavior of the classifier is by examining how the probability, the score, 
or the log-odds change when you increase an individual feature attribute’s value by 1. Examining the 
response to changes is a general strategy for explanation that recurs throughout the chapter. In the case 
of linear logistic regression, an increase of feature value 𝑥(𝑖) by 1 while leaving all other feature values 
constant adds 𝑤(𝑖) to the log-odds. The weight value has a clear effect on the score. The most important 
features per unit change of feature values are those with the largest absolute values of the weights. To 
more easily compare feature importance using the weights, you should first standardize each of the 
features to zero mean and unit standard deviation. (Remember that standardization was first introduced 
when evaluating the covariate balancing of causal models in Chapter 8.) 

12.3.4 Generalized Additive Models 
Generalized additive models (GAMs) are a class of models that extend linear logistic regression to be 
nonlinear while retaining the same approach for interpretation. Instead of scalar weights multiplying 
feature values in the decision function for credit check prediction: 𝑤(1)𝑥(1) + ⋯ + 𝑤(𝑑)𝑥(𝑑), nonlinear 
functions are applied: 𝑓(1)(𝑥(1)) + ⋯ + 𝑓(𝑑)(𝑥(𝑑)). The entire function for a given feature dimension 
explicitly adds to the log-odds or subtracts from it. You can only do this exactly because there is no 
interaction between the feature dimensions. You can choose any hypothesis class for the nonlinear 
functions, but be aware that the learning algorithm has to fit the parameters of the functions from 
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training data. Usually, smooth spline functions are chosen. (A spline is a function made up of piecewise 
polynomials strung together.) 

12.3.5 Generalized Linear Rule Models 
What if you want the regulators to have an easy time understanding the nonlinear functions involved in 
the HELOC decision function themselves? You can choose the nonlinear functions to be Boolean one-
rules or decision stumps involving single features. The generalized linear rule model (GLRM) is exactly 
what you need: a directly interpretable method that combines the best of Boolean rule sets and GAMs.13 
In addition to Boolean one-rules of feature dimensions, the GLRM can have plain feature dimensions 
too. An example GLRM for HELOC credit checks is shown in Table 12.3. 

Table 12.3. An example generalized linear rule model for HELOC credit checks. 

Plain Feature or First-Degree Boolean Rule Weight 
Months Since Most Recent Inquiry14 > 0 0.680261 

Months Since Most Recent Inquiry = 0 −0.090058 

(Standardized) External Risk Estimate 0.654248 

External Risk Estimate > 75 0.263437 

External Risk Estimate > 72 0.107613 

External Risk Estimate > 69 0.035422 

(Standardized) Revolving Balance Divided by Credit Limit −0.553965 

Revolving Balance Divided by Credit Limit ≤ 39 0.062797 

Revolving Balance Divided by Credit Limit ≤ 50 0.045612 

(Standardized) Number of Satisfactory Trades  0.551654 

Number of Satisfactory Trades ≤ 12  −0.312471 

Number of Satisfactory Trades ≤ 17  −0.110220 

 
The three plain features (‘external risk estimate’, ‘revolving balance divided by credit limit’, and 
‘number of satisfactory trades’) were standardized before doing anything else, so you can compare the 
weight values to see which features are important. The decision stump of ‘months since most recent 
inquiry’ being greater than zero is the most important because it has the largest coefficient. The decision 
stump of ‘external risk estimate’ being greater than 69 is the least important because it has the smallest 
coefficient. This is the same kind of understanding that you would apply to a linear logistic regression 
model.  

The way to further understand this model is by remembering that the weight contributes to the log-
odds for every unit change of the feature. Taking the ‘external risk estimate’ feature as an example, the 
GLRM tells you that: 

▪ for every increase of External Risk Estimate by 1, increase the log-odds by 0.0266 (this number is 
obtained by undoing the standardization on the weight 0.6542); 

 

 
13Dennis Wei, Sanjeeb Dash, Tian Gao, and Oktay Günlük. “Generalized Linear Rule Models.” In: Proceedings of the International 
Conference on Machine Learning. Long Beach, California, USA, Jul. 2019, pp. 6687–6696. 
14This feature excludes inquiries made in the last 7 days to remove inquiries that are likely due to price comparison shopping.  
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▪ if External Risk Estimate > 69, increase log-odds by an additional 0.0354; 

▪ if External Risk Estimate > 72, increase log-odds by an additional 0.1076; 

▪ if External Risk Estimate > 75, increase log-odds by an additional 0.2634. 

The rule is fairly straightforward for consumers such as regulators to understand while being an 
expressive model for generalization. As shown in Figure 12.4, you can plot the contributions of the 
‘external risk estimate’ feature to the log-odds to visually see how the Hilo classifier depends on it. Plots 
of 𝑓(𝑖)(𝑥(𝑖)) for other GAMs look similar, but can be nonlinear in different ways.  

 
Figure 12.4. Contribution of the ‘external risk estimate’ feature to the log-odds of the classifier. Accessible cap-
tion. A plot with contribution to log-odds on the vertical axis and external risk estimate on the horizon-
tal axis. The contribution to log-odds function increases linearly with three jump discontinuities. 

You can also ‘undo’ the log-odds to get the actual probability (Equation 12.1 instead of Equation 12.2), 
but it is not additive like the log-odds. Nevertheless, the shape of the probability curve is informative in 
the same way, and is shown in Figure 12.5. 

 
Figure 12.5. Contribution of the ‘external risk estimate’ feature to the probability of the classifier. Accessible 
caption. A plot with probability on the vertical axis and external risk estimate on the horizontal axis. 
The probability function increases linearly with three jump discontinuities. 



174 | Trustworthy Machine Learning 

 

GA2Ms, equivalently known as explainable boosting machines, are directly interpretable models that 
work the same as GAMs, but with two-dimensional nonlinear interaction terms 𝑓(𝑖,𝑖’)(𝑥(𝑖), 𝑥(𝑖’)).15 Visually 
showing their contribution to the log-odds of the classifier requires two-dimensional plots. It is generally 
difficult for people to understand interactions involving more than two dimensions and therefore 
higher-order GA2Ms are not used in practice.16 However, if you allow higher-degree rules in GLRMs, you 
end up with GA2Ms of AND-rules or OR-rules involving multiple interacting feature dimensions that 
unlike general higher-order GA2Ms, are still directly interpretable because rules involving many 
features can be understood by consumers.  

12.3.6 Deletion Diagnostics and Influence Functions 
The final set of methods that appeal to the regulator persona are from the global sample-based category. 
An exact method computes deletion diagnostics to find influential instances and an approximate method 
uses influence functions to do the same. The basic idea of deletion diagnostics is simple. You train a model 
with the entire training dataset of houses or applicants and then train it again leaving out one of the 
training samples. Whatever global changes there are to the model can be attributed to the house or 
applicant that you left out. How do you look at what changed between the two models? You can directly 
look at the two models or their parameters, which makes sense if the models are interpretable. But that 
won’t work if you have an uninterpretable model. What you need to do is evaluate the two models on a 
held-out test set and compute the average change in the predicted labels. The bigger the change, the 
more influential the training data point. The regulator gains an understanding of the model by being 
given a list of the most influential homes or applicants. 

Exactly computing deletion diagnostics is expensive because you have to train 𝑛 + 1 different 
models, leaving one training point out each time plus the model trained on all the data points. So usually, 
you’ll want to approximate the calculation of the most influential training samples. Let’s see how this 
approximation is done for machine learning algorithms that have smooth loss functions using the 
method of influence functions (refer back to Chapter 7 for an introduction to loss functions).17 Influence 
function explanations are also useful for decision makers. 

The method for computing the influence of a certain training data point 𝑥𝑗 on a held-out test data 
point 𝑥𝑡𝑒𝑠𝑡 starts by approximating the loss function by quadratic functions around each training data 
point. The gradient vector ∇𝐿 (slope or set of first partial derivatives) and Hessian matrix ∇2𝐿 (local 
curvature or set of second partial derivatives) of the quadratic approximations to the loss function with 
respect to the model’s parameters are then calculated as closed-form formulas. The average of the 

 

 
15Yin Lou, Rich Caruana, Johannes Gehrke, and Giles Hooker. “Accurate Intelligible Models with Pairwise Interactions.” In: 
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago, Illinois, USA, Aug. 2013, 
pp. 623–631.   
16A recently developed neural network architecture has full interactions between dimensions, but can still be decoded into the 
effects of individual features using very special properties of continued fractions, based on which the architecture is designed. A 
continued fraction is a representation of a number as the sum of its integer part and the reciprocal of another number; this 
other number is represented as the sum of its integer part and the reciprocal of another number; and so on. Isha Puri, Amit 
Dhurandhar, Tejaswini Pedapati, Karthikeyan Shanmugam, Dennis Wei, and Kush R. Varshney. “CoFrNets: Interpretable Neu-
ral Architecture Inspired by Continued Fractions.” In: Advances in Neural Information Processing Systems 34 (Dec. 2021).  
17Pang Wei Koh and Percy Liang. “Understanding Black-Box Predictions via Influence Functions.” In: Proceedings of the Interna-
tional Conference on Machine Learning. Sydney, Australia, Aug. 2017, pp. 1885–1894.  
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Hessian matrices across all the training data points is also computed and denoted by 𝐻. Then the 
influence of sample 𝑥𝑗 on 𝑥𝑡𝑒𝑠𝑡 is −∇𝐿(𝑦𝑡𝑒𝑠𝑡 , 𝑦̂(𝑥𝑡𝑒𝑠𝑡))

𝑇
𝐻−1∇𝐿 (𝑦𝑗 , 𝑦̂(𝑥𝑗)).  

The expression takes this form because of the following reason. First, the −𝐻−1∇𝐿 (𝑦𝑗 , 𝑦̂(𝑥𝑗)) part of 
the expression is a step in the direction toward the minimum of the loss function at 𝑥𝑗 (for those who 
have heard about it before, this is the Newton direction). Taking a step toward the minimum affects the 
model parameters just like deleting 𝑥𝑗 from the training dataset, which is what the deletion diagnostics 
method does explicitly. The expression involves both the slope and the local curvature because the 
steepest direction indicated by the slope is bent towards the minimum of quadratic functions by the 
Hessian. Second, the ∇𝐿(𝑦𝑡𝑒𝑠𝑡, 𝑦̂(𝑥𝑡𝑒𝑠𝑡)) part of the expression maps the overall influence of 𝑥𝑗 to the 𝑥𝑡𝑒𝑠𝑡 
sample. Once you have all the influence values for a set of held-out test houses or applicants, you can 
average, rank, and present them to the regulator to gain global understanding about the model. 
 

12.4 Explanations for Decision Makers 
Decision trees, Boolean rule sets, logistic regression, GAMs, GLRMs, and other similar hypothesis classes 
are directly interpretable through their features because of their relatively simple form. However, there 
are many instances in which you want to or have to use a complicated uninterpretable model. (Examples 
of uninterpretable models include deep neural networks as well as decision forests and other similar 
ensembles that you learned in Chapter 7.) Nevertheless, in these instances, you want the decision maker 
persona to have a model-level global understanding of how the Hilo model works. What are the ways in 
which you can create approximate global explanations to meet this need? (Approximation is a must. If a 
consumer could understand the complicated model without approximation, it would be directly 
interpretable already.) There are two ways to approach global approximate feature-based explanations: 
(1) training a directly interpretable model like a decision tree, rule set, or GAM to be similar to the 
uninterpretable model, or (2) computing global summaries of the uninterpretable model that are 
understandable. In both cases, you first fit the complicated uninterpretable model using the training 
data set.  

In addition to having a general model-level understanding to develop trust, approximate 
explanations at the local level help the appraiser or credit officer understand the predictions to combine 
with their own information to make decisions. The local feature-based explanation methods LIME and 
SHAP extend each of the two global feature-based explanation methods to the local level, respectively. 
A third local feature-based explanation method useful to appraisers and usually applied to semi-
structured data modalities is known as saliency maps. Finally, local approximate sample-based 
explanations based on comparisons to prototypical data points help appraisers and credit officers make 
their final decisions as well. All of these methods are elaborated upon in this section. 

12.4.1 Global Model Approximation 
Global model approximation is the idea of finding a directly interpretable model that is close to a 
complicated uninterpretable model. It has two sub-approaches. The first, known as distillation, changes 
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the learning objective of the directly interpretable model from the standard risk minimization objective 
to an objective of matching the uninterpretable model as closely as possible.18  

The second sub-approach for approximation using directly interpretable models, known as SRatio, 
computes training data weights based on the uninterpretable model and interpretable model. Then it 
trains the directly interpretable model with the instance weights.19 You’ve seen reweighing of data 
points repeatedly in the book: inverse probability weighting for causal inference, confusion matrix-
based weights to adapt to prior probability shift, importance weights to adapt to covariate shift, and 
reweighing as a pre-processing bias mitigation algorithm. The general idea here is the same, and is 
almost a reversal of importance weights for covariate shift.  

Remember from Chapter 9 that in covariate shift settings, the training and deployment feature 
distributions are different, but the labels given the features are the same: 𝑝𝑋

(𝑡𝑟𝑎𝑖𝑛)(𝑥) ≠ 𝑝𝑋
(𝑑𝑒𝑝𝑙𝑜𝑦)

(𝑥) and 
𝑝𝑌∣𝑋

(𝑡𝑟𝑎𝑖𝑛)( 𝑦 ∣∣ 𝑥 ) = 𝑝𝑌∣𝑋
(𝑑𝑒𝑝𝑙𝑜𝑦)

( 𝑦 ∣∣ 𝑥 ). The importance weights are then: 𝑤𝑗 = 𝑝𝑋
(𝑑𝑒𝑝𝑙𝑜𝑦)

(𝑥𝑗)/𝑝𝑋
(𝑡𝑟𝑎𝑖𝑛)

(𝑥𝑗). For 
explanation, there is no separate training and deployment distribution; there is an uninterpretable and 
an interpretable model. Also, since you’re explaining the prediction process, not the data generating 
process, you care about the predicted label 𝑌̂ instead of the true label 𝑌. The feature distributions are the 
same because you train the uninterpretable and interpretable models on the same training data houses 
or applicants, but the predicted labels given the features are different since you’re using different 
models: 𝑝𝑋

(interp)
(𝑥) = 𝑝𝑋

(𝑢𝑛𝑖𝑛𝑡𝑒𝑟𝑝)
(𝑥) and 𝑝𝑌̂∣𝑋

(𝑖𝑛𝑡𝑒𝑟𝑝)
( 𝑦̂ ∣∣ 𝑥 ) ≠ 𝑝𝑌̂∣𝑋

(𝑢𝑛𝑖𝑛𝑡𝑒𝑟𝑝)
( 𝑦̂ ∣∣ 𝑥 ).  

So following the same pattern as adapting to covariate shift by computing the ratio of the 
probabilities that are different, the weights are: 𝑤𝑗 = 𝑝𝑌̂∣𝑋

(𝑢𝑛𝑖𝑛𝑡𝑒𝑟𝑝)
( 𝑦̂ ∣∣ 𝑥 )/𝑝𝑌̂∣𝑋

(𝑖𝑛𝑡𝑒𝑟𝑝)
( 𝑦̂ ∣∣ 𝑥 ). You want the 

interpretable model to look like the uninterpretable model. In the weight expression, the numerator 
comes from the classifier score of the trained uninterpretable model and the denominator comes from 
the score of the directly interpretable model trained without weights. 

12.4.2 LIME 
Global feature-based explanation using model approximation has an extension to the local explanation 
case known as local interpretable model-agnostic explanations (LIME). The idea is similar to the global 
method from the previous subsection. First you train an uninterpretable model and then you 
approximate it by fitting a simple interpretable model to it. The difference is that you do this 
approximation around each deployment data point separately rather than trying to come up with one 
overall approximate model.  

To do so, you get the uninterpretable model’s prediction on the deployment data point you care 
about, but you don’t stop there. You add a small amount of noise to the deployment data point’s features 
several times to create a slew of perturbed input samples and classify each one. You then use this new 
set of data points to train the directly interpretable model. The directly interpretable model is a local 
approximation because it is based only on a single deployment data point and a set of other data points 
created around it. The interpretable model can be a logistic regression or decision tree and is simply 
shown to the decision maker, the Hilo appraiser or credit officer. 

 

 
18Sarah Tan, Rich Caruana, Giles Hooker, Paul Koch, and Albert Gordo. “Learning Global Additive Explanations for Neural Nets 
Using Model Distillation.” arXiv:1801.08640, 2018.  
19Amit Dhurandhar, Karthikeyan Shanmugam, and Ronny Luss. “Enhancing Simple Models by Exploiting What They Already 
Know.” In: Proceedings of the International Conference on Machine Learning. Jul. 2020, pp. 2525–2534.  
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12.4.3 Partial Dependence Plots 
The second global approach for increasing the trust of the appraisers and credit officers is the 
approximate feature-based explanation method known as partial dependence plots. The main idea is 
simple: compute and plot the classifier probability as a function of each of the feature dimensions 𝑋(𝑖) 
separately, that is 𝑃( 𝑌̂ = 1 ∣∣ 𝑋(𝑖) = 𝑥(𝑖) ). You know exactly how to compute this partial dependence 
function from Chapter 3 by integrating or summing the probability 𝑃( 𝑌̂ = 1 ∣∣ 𝑋 = 𝑥 ) over all the feature 
dimensions except dimension 𝑖, also known as marginalization. An example partial dependence plot for 
the ‘external risk estimate’ feature is shown in Figure 12.6. 

 
Figure 12.6. Partial dependence plot of the ‘external risk estimate’ feature for some uninterpretable classifier 
model. Accessible caption. A plot with partial dependence on the vertical axis and external risk esti-
mate on the horizontal axis. The partial dependence smoothly increases in a sigmoid-like shape. 

The plot of an individual feature’s exact contribution to the probability in Figure 12.5 for GAMs looks 
similar to a partial dependence plot in Figure 12.6 for an uninterpretable model, but is different for one 
important reason. The contributions of the individual features exactly combine to recreate a GAM 
because the different features are unlinked and do not interact with each other. In uninterpretable 
models, there can be strong correlations and interactions among input feature dimensions exploited by 
the model for generalization. By not visualizing the joint behaviors of multiple features in partial 
dependence plots, an understanding of those correlations is lost. The set of all 𝑑 partial dependence 
functions is not a complete representation of the classifier. Together, they are only an approximation to 
the complete underlying behavior of the creditworthiness classifier.  

12.4.4 SHAP 
Just like LIME is a local version of global model approximation, a method known as SHAP is a local 
version of partial dependence plots. The partial dependence plot shows the entire curve of partial 
dependence across all feature values, whereas SHAP focuses on the precise point on the feature axis 
corresponding to a particular applicant in the deployment data. The SHAP value is simply the difference 
between the partial dependence value for that applicant and the average probability, shown in Figure 
12.7. 



178 | Trustworthy Machine Learning 

 

 
Figure 12.7. Example showing the SHAP value as the difference between the partial dependence and average 
probability for a given applicant’s ‘external risk estimate’ value. Accessible caption. A plot with partial de-
pendence on the vertical axis and external risk estimate on the horizontal axis. The partial depend-
ence smoothly increases in a sigmoid-like shape. A horizontal line passing through the partial depend-
ence function marks the average probability. The difference between the partial dependence and the 
average probability is the SHAP value. 

12.4.5 Saliency Maps 
Another local explanation technique for you to consider adding to your Hilo explainability toolkit takes 
the partial derivative of the classifier’s score 𝑆 or probability of label 𝑌̂ = 1 ∣ 𝑋 with respect to each of the 
input feature dimensions 𝑥(𝑖), 𝑖 =  1, … , 𝑑. A higher magnitude of the derivative indicates a greater 
change in the classifier score with a change in the feature dimension value, which is interpreted as 
greater importance of that feature. Putting together all 𝑑 of the partial derivatives, you have the gradient 
of the score with respect to the features ∇𝑆 that you examine to see which entries have the largest 
absolute values. For images, the gradient can be displayed as another image known as a saliency map. 
The decision maker can see which parts of the image are most important to the classification. Saliency 
map methods are approximate because they do not consider interactions among the different features. 

Figure 12.8 shows example saliency maps for a classifier that helps the appraisal process by 
predicting what objects are seen in a street view image. The model is the Xception image classification 
model trained on the ImageNet Large Scale Visual Recognition Challenge dataset containing 1000 
different classes of objects.20 The saliency maps shown in the figure are computed by a specific method 
known as grad-CAM.21 It is clear from the saliency maps that the classifier focuses its attention on the 
main house portion and its architectural details, which is to be expected. 

 

 
20François Chollet. “Xception: Deep Learning with Depthwise Separable Convolutions.” In: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition. Honolulu, Hawaii, USA, Jul. 2017, pp. 1251–1258. 
21Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. “Grad-
CAM: Visual Explanations from Deep Networks via Gradient-Based Localization.” In: Proceedings of the IEEE International Confer-
ence on Computer Vision. Venice, Italy, Oct. 2017, pp. 618–626. The implementation https://keras.io/examples/vision/grad_cam/ 
by François Chollet was used to create the figure. 
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Figure 12.8. Two examples of grad-CAM applied to an image classification model. The left column is the input 
image, the middle column is the grad-CAM saliency map with white indicating higher attribution, and the right 
column superimposes the attribution on top of the image. The top row image is classified by the model as a ‘mobile 
home’ and the bottom row image is classified as a ‘palace.’ (Both classifications are incorrect.) The salient archi-
tectural elements are correctly highlighted by the explanation algorithm in both cases. Accessible caption. In 
the first example, the highest attribution on a picture of a townhouse is on the windows, stairs, and 
roof. In the second example, the highest attribution on a picture of a colonial-style house is on the front 
portico. 

12.4.6 Prototypes 
Another kind of explanation useful for the decision maker persona, appraiser or credit officer, is through 
local sample-based approximations of uninterpretable models. Remember that local directly 
interpretable models, such as the k-nearest neighbor classifier work by averaging the labels of nearby 
HELOC applicant data points. The explanation is just the list of those other applicants and their labels. 
However, it is not required that a sample-based explanation only focus on nearby applicants. In this 
section, you will learn an approach for approximate local sample-based explanation that presents 
prototypical applicants as its explanation. 

Prototypes—data points in the middle of a cluster of other data points shown in Figure 12.9—are useful 
ways for consumers to perform case-based reasoning to gain understanding of a classifier.22 This 
reasoning is as follows. To understand the appraised value of a house, compare it to the most 
prototypical other house in the neighborhood that is average in every respect: average age, average 
square footage, average upkeep, etc. If the appraised value of the house in question is higher than the 

 

 
22Been Kim, Rajiv Khanna, and Oluwasanmi Koyejo. “Examples Are Not Enough, Learn to Criticize!” In: Advances in Neural Infor-
mation Processing Systems 29, (Dec. 2016), pp. 2288–2296. Karthik S. Gurumoorthy, Amit Dhurandhar, Guillermo Cecchi, and 
Charu Aggarwal. “Efficient Data Representation by Selecting Prototypes with Importance Weights.” In: Proceedings of the IEEE 
International Conference on Data Mining. Beijing, China, Nov. 2019, pp. 260–269. 
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prototype, you can see which features have better values and thus get a sense of how the classifier works, 
and vice versa.  

 
Figure 12.9. Example of a dataset with three prototype samples marked. Accessible caption. A plot with sev-
eral data points, some of which are clustered into three main clusters. Central datapoints within those 
clusters are marked as prototypes. 

However, just showing the one nearest prototype is usually not enough. You’ll also want to show a 
few other nearby prototypes so that the consumer can gain even more intuition. Importantly, listing 
several nearby prototypes to explain an uninterpretable model and listing several nearby data points to 
explain the k-nearest neighbor classifier is not the same. It is often the case that the several nearby house 
data points are all similar to each other and do not provide any further intuition than any one of them 
alone. With nearby prototype houses, each one is quite different from the others and therefore does 
provide new understanding. 

Let’s look at examples of applicants in deployment data whose creditworthiness was predicted by an 
uninterpretable Hilo model along with three of their closest prototypes from the training data. As a first 
example, examine an applicant predicted to be creditworthy by the model. The labels of the prototypes 
must match that of the data point. The example creditworthy applicant’s prototype explanation is given 
in Table 12.4. 

The data point and the nearest prototype are quite similar to each other, but with the applicant 
having a slightly lower ‘external risk estimate’ and slightly longer time since the oldest trade. It makes 
sense that the applicant would be predicted to be creditworthy just like the first prototype, even with 
those differences in ‘external risk estimate’ and ‘months since oldest trade open.’ The second nearest 
prototype represents applicants who have been in the system longer but have executed fewer trades, 
and have a lower ‘external risk estimate.’ The decision maker can understand from this that the model 
is willing to predict applicants as creditworthy with lower ‘external risk estimate’ values if they 
counteract that low value with longer time and fewer trades. The third nearest prototype represents 
applicants who have been in the system even longer, executed even fewer trades, have never been 
delinquent, and have a very high ‘external risk estimate’: the really solid applicants. 
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Table 12.4. An example prototype explanation for a HELOC applicant predicted to be creditworthy. 

Feature Applicant 
(Credit-
worthy) 

Nearest 
Prototype 

Second 
Prototype 

Third 
Prototype 

External Risk Estimate 82 85 77 89 
Months Since Oldest Trade Open 280 223 338 379 
Months Since Most Recent Trade Open 13 13 2 156 
Average Months in File 102 87 109 257 
Number of Satisfactory Trades 22 23 16 3 
Percent Trades Never Delinquent 91 91 90 100 
Months Since Most Recent Delinquency 26 26 65 0 
Number of Total Trades 23 26 21 3 
Number of Trades Open in Last 12 
Months 

0 0 1 0 

Percent Installment Trades 9 9 14 33 
Months Since Most Recent Inquiry 0 1 0 0 
Revolving Balance Divided by Credit 
Limit 

3 4 2 0 

 
As a second example, let’s look at an applicant predicted to be non-creditworthy. This applicant’s 

prototype explanation is given in Table 12.5. In this example of a non-creditworthy prediction, the 
nearest prototype has a better ‘external risk estimate,’ a lower number of months since the oldest trade, 
and a lower revolving balance burden, but is still classified as non-creditworthy in the training data. 
Thus, there is some leeway in these variables. The second nearest prototype represents a younger and 
less active applicant who has a very high revolving balance burden and poorer ‘external risk estimate’ 
and the third nearest prototype represents applicants who have been very recently delinquent and have 
a very poor ‘external risk estimate.’ Deployment applicants can be even more non-creditworthy if they 
have even higher revolving balance burdens and recent delinquencies. 
 

12.5 Explanations for Affected Users 
The third and final consumer persona for you to consider as you put together an explainability toolkit 
for Hilo is the affected user: the HELOC applicant. Consumers from this persona are not so concerned 
about the overall model or about gaining any approximate understanding. Their goal is quite clear: tell 
me exactly why my case was deemed to be creditworthy or non-creditworthy. They need recourse when 
their application was deemed non-creditworthy to get approved the next time. Local exact feature-based 
explanations meet the need for this persona. 
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Table 12.5. An example prototype explanation for a HELOC applicant predicted to be non-creditworthy. 

Feature Applicant 
(Non-

credit-
worthy) 

Nearest 
Prototype 

Second 
Prototype 

Third 
Prototype 

External Risk Estimate 65 73 61 55 
Months Since Oldest Trade Open 256 191 125 194 
Months Since Most Recent Trade Open 15 17 7 26 
Average Months in File 52 53 32 100 
Number of Satisfactory Trades 17 19 5 18 
Percent Trades Never Delinquent 100 100 100 84 
Months Since Most Recent Delinquency 0 0 0 1 
Number of Total Trades 19 20 6 11 
Number of Trades Open in Last 12 
Months 

7 0 3 0 

Percent Installment Trades 29 25 60 42 
Months Since Most Recent Inquiry 2 0 0 23 
Revolving Balance Divided by Credit 
Limit 

57 31 232 84 

 
The contrastive explanations method (CEM) pulls out such local exact explanations from 

uninterpretable models in a way that leads directly to avenues for recourse by applicants.23 CEM yields 
two complementary explanations that go together: (1) pertinent negatives and (2) pertinent positives. The 
terminology comes from medical diagnosis. A pertinent negative is something in the patient’s history 
that helps a diagnosis because the patient denies that it is present. A pertinent positive is something that 
is necessarily present in the patient. For example, a patient with abdominal discomfort, watery stool, 
and without fever will be diagnosed with likely viral gastroenteritis rather than bacterial gastroenteritis. 
The abdominal discomfort and watery stool are pertinent positives and the lack of fever is a pertinent 
negative. A pertinent negative explanation is the minimum change needed in the features to change the 
predicted label. Changing no fever to fever will change the diagnosis from viral to bacterial.  

The mathematical formulation of CEM is almost the same as an adversarial example that you learned 
about in Chapter 11: find the smallest sparse perturbation 𝛿 so that 𝑦̂(𝑥 + 𝛿) is different from 𝑦̂(𝑥). For 
pertinent negatives, you want the perturbation to be sparse or concentrated in a few features to be 
interpretable and understandable. This contrasts with adversarial examples whose perturbations 
should be diffuse and spread across a lot of features to be imperceptible. A pertinent positive 
explanation is also a sparse perturbation that is removed from 𝑥 and maintains the predicted label. 
Contrastive explanations are computed in a post hoc manner after an uninterpretable model has already 
been trained. Just like for adversarial examples, there are two cases for the computation: open-box when 

 

 
23Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan Shanmugam, and Payel Das. “Expla-
nations Based on the Missing: Towards Contrastive Explanations with Pertinent Negatives.” In: Advances in Neural Information 
Processing Systems 32 (Dec. 2018), pp. 590–601.  
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the gradients of the model are made available and closed-box when the gradients are not made available 
and must be estimated. 

Table 12.6. An example contrastive explanation for a HELOC applicant predicted to be creditworthy. 

Feature Applicant 
(Credit-worthy) 

Pertinent 
Positive 

External Risk Estimate 82 82 
Months Since Oldest Trade Open 280 - 
Months Since Most Recent Trade Open 13 - 
Average Months in File 102 91 
Number of Satisfactory Trades 22 22 
Percent Trades Never Delinquent 91 91 
Months Since Most Recent Delinquency 26 - 
Number of Total Trades 23 - 
Number of Trades Open in Last 12 Months 0 - 
Percent Installment Trades 9 - 
Months Since Most Recent Inquiry 0 - 
Revolving Balance Divided by Credit Limit 3 - 

 

Table 12.7. An example contrastive explanation for a HELOC applicant predicted to be creditworthy. 

Feature Applicant 
(Non-credit-

worthy) 

Pertinent 
Negative 

Perturbation 

Pertinent 
Negative 

Value 
External Risk Estimate 65 15.86 80.86 
Months Since Oldest Trade Open 256 0 256 
Months Since Most Recent Trade Open 15 0 15 
Average Months in File 52 13.62 65.62 
Number of Satisfactory Trades 17 4.40 21.40 
Percent Trades Never Delinquent 100 0 100 
Months Since Most Recent Delinquency 0 0 0 
Number of Total Trades 19 0 19 
Number of Trades Open in Last 12 Months 7 0 7 
Percent Installment Trades 29 0 29 
Months Since Most Recent Inquiry 2 0 2 
Revolving Balance Divided by Credit Limit 57 0 57 

 
Examples of contrastive explanations for the same two applicants presented in the prototype section 

are given in Table 12.6 (creditworthy; pertinent positive) and Table 12.7 (non-creditworthy; pertinent 
negative). To remain creditworthy, the pertinent positive states that this HELOC applicant must 
maintain the values of ‘external risk estimate,’ ‘number of satisfactory trades,’ and ‘percent trades never 
delinquent.’ The ‘average months in file’ is allowed to drop to 91, which is a similar behavior seen in the 
first prototype of the prototype explanation. For the non-creditworthy applicant, the pertinent negative 
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perturbation is sparse as desired, with only three variables changed. This minimal change to the 
applicant’s features tells them that if they improve their ‘external risk estimate’ by 16 points, wait 14 
months to increase their ‘average months in file’, and increase their ‘number of satisfactory trades’ by 
5, the model will predict them to be creditworthy. The recourse for the applicant is clear.  

 

12.6 Quantifying Interpretability 
Throughout the chapter, you’ve learned about many different explainability methods applicable at 
different points of the machine learning pipeline appealing to different personas, differentiated 
according to several dichotomies: local vs. global, approximate vs. exact, and feature-based vs. sample-
based. But how do you know that a method is actually good or not? Your boss isn’t going to put any of 
your explainability tools into the production Hilo platform unless you can prove that they’re effective.  

Evaluating interpretability does not yield the same sort of quantitative metrics as in Part 3 for 
distributional robustness, fairness, and adversarial robustness. Ideally, you want to show explanations 
to a large set of consumers from the relevant persona performing the task the model is for and get their 
judgements. Known as application-grounded evaluation, this way of measuring the goodness of an 
explanation is usually costly and logistically difficult.24 A less involved approach, human-grounded 
evaluation, uses a simpler task and people who are not the future intended consumers, so just general 
testers rather than actual appraisers or credit officers. An even less involved measurement of 
interpretability, functionally-grounded evaluation, uses quantitative proxy metrics to judge explanation 
methods on generic prediction tasks. These evaluation approaches are summarized in Table 12.8. 

Table 12.8. Three categories of evaluating explanations. 

Category Consumers Tasks 
application-grounded evaluation true persona members real task 
human-grounded evaluation generic people simple task 
functionally-grounded evaluation none proxy task 

 
What are these quantitative proxy metrics for interpretability? Some measure simplicity, like the 

number of operations needed to make a prediction using a model. Others compare an explanation 
method’s ordering of features attribution to some ground-truth ordering. (These explainability metrics 
only apply to feature-based explanations.) An explainability metric known as faithfulness is based on this 
idea of comparing feature orderings.25 Instead of requiring a true ordering, however, it measures the 
correlation between a given method’s feature order to the order in which the accuracy of a model drops 
the most when the corresponding feature is deleted. A correlation value of 1 is the best faithfulness. 
Unfortunately, when faithfulness is applied to saliency map explanations, it is unreliable.26 You should 

 

 
24Finale Doshi-Velez and Been Kim. “Towards a Rigorous Science of Interpretable Machine Learning.” arXiv:1702.08608, 
2017.  
25David Alvarez-Melis and Tommi S. Jaakkola. “Towards Robust Interpretability with Self-Explaining Neural Networks.” In: 
Advances in Neural Information Processing Systems 32 (Dec. 2018), pp. 7786–7795. 
26Richard Tomsett, Dan Harborne, Supriyo Chakraborty, Prudhvi Gurram, and Alun Preece. “Sanity Checks for Saliency Met-
rics.” In: Proceedings of the AAAI Conference on Artificial Intelligence. New York, New York, USA, Feb. 2020, pp. 6021–6029. 
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be beware of functionally-grounded evaluation and always try to do at least a little human-grounded and 
application-grounded evaluation before the Hilo platform goes live. 

You’ve put together an explainability toolkit for both Hilo house appraisal and credit checking 
models and implemented the appropriate methods for the right touchpoints of the applicants, 
appraisers, credit officers, and regulators. You haven’t taken shortcuts and have gone through a few 
rounds of functionally-grounded evaluations. Your contributions to the Hilo platform help make it a 
smashing success when it is launched. 

 

12.7 Summary 
▪ Interpretability and explainability are needed to overcome cognitive biases in the last-mile 

communication problem between the machine learning model and the human consumer.  

▪ There is no one best explanation method. Different consumers have different personas with 
different needs to achieve their goals. The important personas are the affected user, the decision 
maker, and the regulator. 

▪ Human interpretability of machine learning requires features that people can understand to 
some extent. If the features are not understandable, disentangled representation can help. 

▪ Explanation methods can be divided into eight categories by three dichotomies. Each category 
tends to be most appropriate for one consumer persona. The first dichotomy is whether the 
explanation is for the entire model or a specific input data point (global/local). The second 
dichotomy is whether the explanation is an exact representation of the underlying model or it 
contains some approximation (exact/approximate). The third dichotomy is whether the language 
used in creating the explanation is based on the features or on entire data points (feature-
based/sample-based). 

▪ Ideally, you want to quantify how good an explanation method is by showing explanations to 
consumers in the context of the actual task and eliciting their feedback. Since this is expensive 
and difficult, proxy quantitative metrics have been developed, but they are far from perfect. 
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13  
Transparency 

Imagine that you are a model validator in the model risk management department at JCN Corporation, 
the (fictional) information technology company undergoing an enterprise transformation first 
encountered in Chapter 7. In addition to using machine learning for estimating the skills of its 
employees, JCN Corporation is rolling out machine learning in another human resources effort: 
proactive retention. Using historical employee administrative data, JCN Corporation is developing a 
system to predict employees at risk of voluntarily resigning in the next six months and offering 
incentives to retain them. The data includes internal corporate information on job roles and 
responsibilities, compensation, market demand for jobs, performance reviews, promotions, and 
management chains. JCN Corporation has consent to use the employee administrative data for this 
purpose through employment contracts. The data was made available to JCN Corporation’s data science 
team under institutional control after a syntactic anonymity transformation was performed.  

The team has developed several attrition prediction models using different machine learning 
algorithms, keeping accuracy, fairness, distributional robustness, adversarial robustness, and 
explainability as multiple goals. If the attrition prediction models are fair, the proactive retention system 
could make employment at JCN Corporation more equitable than it is right now. The project has moved 
beyond the problem specification, data understanding, data preparation, and modeling phases of the 
development lifecycle and is now in the evaluation phase.  

“The full cycle of a machine learning project is not just modeling. It is finding the 
right data, deploying it, monitoring it, feeding data back [into the model], showing 
safety—doing all the things that need to be done [for a model] to be deployed. [That 
goes] beyond doing well on the test set, which fortunately or unfortunately is what we 
in machine learning are great at.” 

—Andrew Ng, computer scientist at Stanford University 
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Your job as the model validator is to test out and compare the models to ensure at least one of them 
is safe and trustworthy before it is deployed. You also need to obtain buy-in from various parties before 
you can sign your name and approve the model’s deployment. To win the support of internal JCN 
Corporation executives and compliance officers, external regulators,1 and members of a panel of diverse 
employees and managers within the company you’ll assemble, you need to provide transparency by 
communicating not only the results of independent tests you conduct, but also what happened in the 
earlier phases of the lifecycle. (Transparent reporting to the general public is also something you should 
consider once the model is deployed.) Such transparency goes beyond model interpretability and 
explainability because it is focused on model performance metrics and their uncertainty 
characterizations, various pieces of information about the training data, and the suggested uses and 
possible misuses of the model.2 All of these pieces of information are known as facts.  

Not all of the various consumers of your transparent reporting are looking for the same facts or the 
same level of detail. Modeling tasks besides predicting voluntary attrition may require different facts. 
Transparency has no one-size-fits-all solution. Therefore, you should first run a small design exercise 
to understand which facts and details are relevant for the proactive retention use case and for each 
consumer, and the presentation style preferred by each consumer.3 (Such an exercise is related to value 
alignment, which is elaborated upon in Chapter 14.) The artifact that ultimately presents a collection of 
facts to a consumer is known as a factsheet. After the design exercise, you can be off to the races with 
creating, collecting, and communicating information about the lifecycle. 

You are shouldering a lot of responsibility, so you don’t want to perform your job in a haphazard way 
or take any shortcuts. To enable you to properly evaluate and validate the JCN Corporation voluntary 
resignation models and communicate your findings to various consumers, this chapter teaches you to: 

▪ create factsheets for transparent reporting, 

▪ capture facts about the model purpose, data provenance, and development steps, 

▪ conduct tests that measure the probability of expected harms and the possibility of unexpected 
harms to generate quantitative facts, 

▪ communicate these test result facts and their uncertainty, and 

▪ defend your efforts against people who are not inclined to trust you. 

You’re up to the task padawan, so let’s start equipping you with the tools you need. 
 

13.1 Factsheets 
Transparency should reveal several kinds of facts that come from different parts of the lifecycle.4 From 
the problem specification phase, it is important to capture the goals, intended uses, and possible 

 

 
1Regulations play a role in the company’s employee retention programs because they are subject to fair employment laws.  
2Q. Vera Liao and Kush R. Varshney. “Human-Centered Explainable AI (XAI): From Algorithms to User Experiences.” 
arXiv:2110.10790, 2021. 
3John Richards, David Piorkowski, Michael Hind, Stephanie Houde, and Aleksandra Mojsilović. “A Methodology for Creating AI 
FactSheets.” arXiv:2006.13796, 2020.  
4Matthew Arnold, Rachel K. E. Bellamy, Michael Hind, Stephanie Houde, Sameep Mehta, Aleksandra Mojsilović, Ravi Nair, 
Karthikeyan Natesan Ramamurthy, Alexandra Olteanu, David Piorkowski, Darrell Reimer, John Richards, Jason Tsay, and 
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misuses of the system along with who was involved in making those decisions (e.g. were diverse voices 
included?). From the data understanding phase, it is important to capture the provenance of the data, 
including why it was originally collected. From the data preparation phase, it is important to catalog the 
data transformations and feature engineering steps employed by the data engineers and data scientists, 
as well as any data quality analyses that were performed. From the modeling phase, it is important to 
understand what algorithmic choices were made and why, including which mitigations were employed. 
From the evaluation phase, it is important to test for trust-related metrics and their uncertainties 
(details are forthcoming in the next section). Overall, there are two types of facts for you to transparently 
report: (1) (qualitative) knowledge from inside a person’s head that must be explicitly asked about, and 
(2) data, processing steps, test results, models, or other artifacts that can be grabbed digitally.  

How do you get access to all this information coming from all parts of the machine learning 
development lifecycle and from different personas? Wouldn’t it be convenient if it were documented 
and transparently reported all along? Because of the tireless efforts of your predecessors in the model 
risk management department, JCN Corporation has instrumented the entire lifecycle with a mandatory 
tool that manages machine learning development by creating checklists and pop-up reminders for 
different personas to enter qualitative facts at the time they should be top-of-mind for them. The tool 
also automatically collects and version-controls digital artifacts as facts as soon as they are generated. 
Let’s refer to the tool as fact flow, which is shown in Figure 13.1. 

 
Figure 13.1. The fact flow captures qualitative and quantitative facts generated by different people and processes 
throughout the machine learning development lifecycle and renders them into factsheets appropriate for different 
consumers. Accessible caption. Facts from people and technical steps in the development lifecycle go 
into a renderer which may output a detailed factsheet, a label factsheet, or a SDoC factsheet. 

 

 
Kush R. Varshney. “FactSheets: Increasing Trust in AI Services through Supplier’s Declarations of Conformity.” In: IBM Journal 
of Research and Development 63.4/5 (Jul./Sep. 2019), p. 6.  
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Since machine learning is a general purpose technology (recall the discussion in Chapter 1), there is 
no universal set of facts that applies to all machine learning models irrespective of their use and 
application domain. The facts to validate the machine learning systems for m-Udhār Solar, 
Unconditionally, ThriveGuild, and Wavetel (fictional companies discussed in previous chapters) are not 
exactly the same; more precision is required.5 Moreover, the set of facts that make it to a factsheet and 
their presentation depends on the consumer. As the model validator, you need a full dump of all the 
facts. You should adjust the factsheet to a summary label, document, or presentation slides for personas 
who, to overcome their cognitive biases, need fewer details. You should broadly disseminate simpler 
factsheets among JCN Corporation managers (decision makers), employees (affected users), and the 
general public who yearn for transparency. You will have determined the set of facts, their level of detail, 
and their presentation style for different personas through your initial design exercise. Fact flow has a 
renderer for you to create different factsheet presentations. 

You should also sign and release a factsheet rendered as a supplier’s declaration of conformity (SDoC) 
for external regulators. An SDoC is a written assurance that a product or service conforms to a standard 
or technical regulation. Your declaration is based on your confidence in the fact flow tool and the 
inspection of the results you have conducted.6 Conformity is one of several related concepts (compliance, 
impact, and accountability), but different from each of them.7 Conformity is abiding by specific 
regulations whereas compliance is abiding by broad regulatory frameworks. Conformity is a statement 
on abiding by regulations at the current time whereas impact is abiding by regulations into an uncertain 
future. Conformity is a procedure by which to show abidance whereas accountability is a responsibility 
to do so. As such, conformity is the narrowest of definitions and is the one that forms the basis for the 
draft regulation of high-risk machine learning systems in the European Economic Area and may become 
a standard elsewhere too. Thus SDoCs represent an up-and-coming requirement for machine learning 
systems used in high-stakes decision making, including proactive retention at JCN Corporation. 

“We really need standards for what an audit is.”  

—Rumman Chowdhury, machine learning ethicist at Twitter 

 

13.2 Testing for Quantitative Facts 
Many quantitative facts come from your model testing in the evaluation phase. Testing a machine 
learning model seems easy enough, right? The JCN Corporation data scientists already obtained good 
accuracy numbers on an i.i.d. held-out data set, so what’s the big deal? First, you cannot be sure that the 

 

 
5Ryan Hagemann and Jean-Marc Leclerc. “Precision Regulation for Artificial Intelligence.” In: IBM Policy Lab Blog (Jan. 2020). 
URL: https://www.ibm.com/blogs/policy/ai-precision-regulation. 
6National Institute of Standards and Technology. “The Use of Supplier’s Declaration of Conformity.” URL: 
https://www.nist.gov/system/files/documents/standardsgov/Sdoc.pdf.  
7Nikolaos Ioannidis and Olga Gkotsopoulou. “The Palimpsest of Conformity Assessment in the Proposed Artificial Intelligence 
Act: A Critical Exploration of Related Terminology.” In: European Law Blog (Jul. 2021). URL: https://europeanlaw-
blog.eu/2021/07/02/the-palimpsest-of-conformity-assessment-in-the-proposed-artificial-intelligence-act-a-critical-explora-
tion-of-related-terminology. 
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data scientists completely isolated their held-out data set and didn’t incur any leakage into modeling.8 
As the model validator, you can ensure such isolation in your testing. 

Importantly, testing machine learning systems is different from testing other kinds of software 
systems.9 Since the whole point of machine learning systems is to generalize from training data to label 
new unseen input data points, they suffer from the oracle problem: not knowing what the correct answer 
is supposed to be for a given input.10 The way around this problem is not by looking at a single 
employee’s input data point and examining its corresponding output attrition prediction, but by looking 
at two or more variations that should yield the same output. This approach is known as using 
metamorphic relations.  

For example, a common test for counterfactual fairness (described in Chapter 10) is to input two data 
points that are the same in every way except having different values of a protected attribute. If the 
predicted label is not the same for both of them, the test for counterfactual fairness fails. The important 
point is that the actual predicted label value (will voluntarily resign/won’t voluntarily resign) is not the 
key to the test, but whether that predicted value is equal for both inputs. As a second example for 
competence, if you multiply a feature’s value by a constant in all training points, train the model, and 
then score a test point that has been scaled by the same constant, you should get the same prediction of 
voluntary resignation as if you had not done any scaling at all. In some other application involving semi-
structured data, a metamorphic relation for an audio clip may be to speed it up or slow it down while 
keeping the pitch the same. Coming up with such metamorphic relations requires ingenuity; automating 
this process is an open research question. 

In addition to the oracle problem of machine learning, there are three factors you need to think about 
that go beyond the typical testing done by JCN Corporation data scientists while generating facts: 

1. testing for dimensions beyond accuracy, such as fairness, robustness, and explainability, 

2. pushing the system to its limits so that you are not only testing average cases, but also covering 
edge cases, and 

3. quantifying aleatoric and epistemic uncertainty around the test results. 

Let’s look into each of these three concerns in turn. 

13.2.1 Testing for Dimensions of Trustworthiness 
If you’ve reached this point in the book, it will not surprise you that testing for accuracy (and related 
performance metrics described in Chapter 6) is not sufficient when evaluating machine learning models 
that are supposed to be trustworthy. You also need to test for fairness using metrics such as disparate 
impact ratio and average odds difference (described in Chapter 10), adversarial robustness using 
metrics such as empirical robustness and CLEVER score (described in Chapter 11), and explainability 

 

 
8Sebastian Schelter, Yuxuan He, Jatin Khilnani, and Julia Stoyanovich. “FairPrep: Promoting Data to a First-Class Citizen in 
Studies of Fairness-Enhancing Interventions.” In: Proceedings of the International Conference on Extending Database Technology. 
Copenhagen, Denmark, Mar.–Apr. 2020, pp. 395–398. 
9P. Santhanam. “Quality Management of Machine Learning Systems.” In: Proceedings of the AAAI Workshop on Engineering Depend-
able and Secure Machine Learning Systems. New York, New York, USA, Feb. 2020.  
10Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. “Machine Learning Testing: Survey, Landscapes and Horizons.” In: IEEE 
Transactions on Software Engineering 48.1 (Jan. 2022), pp. 1–36.  
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using metrics such as faithfulness (described in Chapter 12).11 You also need to test for accuracy under 
distribution shifts (described in Chapter 9). Since the JCN Corporation data science team has created 
multiple attrition prediction models, you can compare the different options. Once you have computed 
the metrics, you can display them in the factsheet as a table such as Table 13.1 or in visual ways to be 
detailed in Section 13.3 to better understand their domains of competence across dimensions of 
trustworthiness. (Remember that domains of competence for accuracy were a main topic of Chapter 7.) 

Table 13.1. Result of testing several attrition models for multiple trust-related metrics. 

Model Accuracy Accuracy with 
Distribution 

Shift 

Disparate 
Impact 
Ratio 

Empirical 
Robust-

ness 

Faithful-
ness 

logistic regression 0.869 0.775 0.719 0.113 0.677 

neural network 0.849 0.755 1.127 0.127 0.316 

decision forest (boosting) 0.897 0.846 1.222 0.284 0.467 

decision forest (bagging) 0.877 0.794 0.768 0.182 0.516 

 
In these results, the decision forest with boosting has the best accuracy and robustness to 

distribution shift, but the poorest adversarial robustness, and poor fairness and explainability. In 
contrast, the logistic regression model has the best adversarial robustness and explainability, while 
having poorer accuracy and distributional robustness. None of the models have particularly good 
fairness (disparate impact ratio), and so the data scientists should go back and do further bias 
mitigation. The example emphasizes how looking only at accuracy leaves you with blind spots in the 
evaluation phase. As the model validator, you really do need to test for all the different metrics. 

13.2.2 Generating and Testing Edge Cases 
The primary way to test or audit machine learning models is by feeding in data from different employees 
and looking at the output attrition predictions that result.12 Using a held-out dataset with the same 
probability distribution as the training data will tell you how the model performs in the average case. 
This is how to estimate empirical risk (the empirical approximation to the probability of error), and thus 
the way to test for the first of the two parts of safety: the risk of expected harms. Similarly, using held-
out data with the same probability distribution is common practice (but not necessary) to test for 
fairness and explainability. Testing for distributional robustness, by definition however, requires input 
data points drawn from a probability distribution different from the training data. Similarly, computing 
empirical adversarial robustness involves creating adversarial example employee features as input.  

In Chapter 11, you have already learned how to push AI systems to their limits using adversarial 
examples. These adversarial examples are test cases for unexpected, worst-case harms that go beyond 

 

 
11Moninder Singh, Gevorg Ghalachyan, Kush R. Varshney, and Reginald E. Bryant. “An Empirical Study of Accuracy, Fairness, 
Explainability, Distributional Robustness, and Adversarial Robustness.” In: Proceedings of the KDD Workshop on Measures and Best 
Practices for Responsible AI. Aug. 2021.  
12Aniya Aggarwal, Samiulla Shaikh, Sandeep Hans, Swastik Haldar, Rema Ananthanarayanan, and Diptikalyan Saha. “Testing 
Framework for Black-Box AI Models.” In: Proceedings of the IEEE/ACM International Conference on Software Engineering. May 2021, 
pp. 81–84.  
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the probability distribution of the training and held-out datasets. And in fact, you can think about 
crafting adversarial examples for fairness and explainability as well as for accuracy.13 Another way to 
find edge cases in machine learning systems is by using a crowd of human testers who are challenged 
to ‘beat the machine.’14 They get points in a game for coming up with rare but catastrophic data points. 

Importantly, the philosophy of model validators such as yourself who are testing the proactive 
retention system is different from the philosophy of malicious actors and ‘machine beaters.’ These 
adversaries need to succeed just once to score points, whereas model validators need to efficiently 
generate test cases that have good coverage and push the system from many different sides. You and 
other model validators have to be obsessed with failure; if you’re not finding flaws, you have to think that 
you’re not trying hard enough.15 Toward this end, coverage metrics have been developed for neural 
networks that measure if every neuron in the model has been tested. However, such coverage metrics 
can be misleading and do not apply to other kinds of machine learning models.16 Developing good 
coverage metrics and test case generation algorithms to satisfy those coverage metrics remains an open 
research area. 

13.2.3 Uncertainty Quantification 
As you evaluate and validate proactive retention models for JCN Corporation, testing gives you estimates 
of the different dimensions of trust as in Table 13.1. But as you’ve learned throughout the book, 
especially Chapter 3, uncertainty is everywhere, including in those test results. By quantifying the 
uncertainty of trust-related metrics, you can be honest and transparent about the limitations of the test 
results. Several different methods for uncertainty quantification are covered in this section, 
summarized in Figure 13.2. 

“I can live with doubt and uncertainty and not knowing. I think it’s much more 
interesting to live not knowing than to have answers which might be wrong.” 

—Richard Feynman, physicist at California Institute of Technology 

The total predictive uncertainty includes both aleatoric and epistemic uncertainty. It is indicated by 
the score for well-calibrated classifiers (remember the definition of calibration, Brier score, and 
calibration loss17 from Chapter 6). When the attrition prediction classifier is well-calibrated, the score is 

 

 
13Botty Dimanov, Umang Bhatt, Mateja Jamnik, and Adrian Weller. “You Shouldn’t Trust Me: Learning Models Which Conceal 
Unfairness from Multiple Explanation Methods.” In: Proceedings of the European Conference on Artificial Intelligence. Santiago de 
Compostela, Spain, Aug.–Sep. 2020. Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju. “Fooling 
LIME and SHAP: Adversarial Attacks on Post Hoc Explanation Methods.” In: Proceedings of the AAAI/ACM Conference on AI, Ethics, 
and Society. New York, New York, USA, Feb. 2020, pp. 180–186. 
14Joshua Attenberg, Panos Ipeirotis, and Foster Provost. “Beat the Machine: Challenging Humans to Find a Predictive Model’s 
‘Unknown Unknowns.’” In: Journal of Data and Information Quality 6.1 (Mar. 2015), p. 1.  
15Thomas G. Diettrich. “Robust Artificial Intelligence and Robust Human Organizations.” In: Frontiers of Computer Science 13.1 
(2019), pp. 1–3. 
16Dusica Marijan and Arnaud Gotlieb. “Software Testing for Machine Learning.” In: Proceedings of the AAAI Conference on Artificial 
Intelligence. New York, New York, USA, Feb. 2020, pp. 13576–13582.  
17A popular variation of the calibration loss detailed in Chapter 6, known as the expected calibration error, uses the average abso-
lute difference rather than the average squared difference. 
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also the probability of an employee voluntarily resigning being 1; scores close to 0 and 1 are certain 
predictions and scores close to 0.5 are uncertain predictions. Nearly all of the classifiers that we’ve 
talked about in the book give continuous-valued scores as output, but many of them, such as the naïve 
Bayes classifier and modern deep neural networks, tend not to be well-calibrated.18 They have large 
values of calibration loss because their calibration curves are not straight diagonal lines like they ideally 
should be (remember the picture of a calibration curve dropping below and pushing above the ideal 
diagonal line in Figure 6.4).  

 
Figure 13.2. Different methods for quantifying the uncertainty of classifiers. Accessible caption. Hierarchy 
diagram with uncertainty quantification as the root. Uncertainty quantification has children total pre-
dictive uncertainty, and separate aleatoric and epistemic uncertainty. Total predictive uncertainty has 
children mitigate miscalibration and estimate uncertainty. Mitigate miscalibration has children Platt 
scaling and isotonic regression. Estimate uncertainty has children jackknife and infinitesimal jack-
knife. Separate aleatoric and epistemic uncertainty has children Bayesian methods and ensemble 
methods. 

Just like in other pillars of trustworthiness, algorithms for obtaining uncertainty estimates and 
mitigating poor calibration apply at different stages of the machine learning pipeline. Unlike other topic 
areas, there is no pre-processing for uncertainty quantification. There are, however, methods that apply 
during model training and in post-processing. Two post-processing methods for mitigating poor 
calibration, Platt scaling and isotonic regression, both take the classifier’s existing calibration curve and 
straighten it out. Platt scaling assumes that the existing calibration curve looks like a sigmoid or logistic 

 

 
18Alexandru Niculescu-Mizil and Rich Caruana. “Predicting Good Probabilities with Supervised Learning.” In: Proceedings of the 
International Conference on Machine Learning. Bonn, Germany, Aug. 2005, pp. 625–632. Chuan Guo, Geoff Pleiss, Yu Sun, and 
Killian Q. Weinberger. “On Calibration of Modern Neural Networks.” In: Proceedings of the International Conference on Machine 
Learning. Sydney, Australia, Aug. 2017, pp. 1321–1330. 
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activation function whereas isotonic regression can work with any shape of the existing calibration 
curve. Isotonic regression requires more data than Platt scaling to work effectively.  

A post-processing method for total predictive uncertainty quantification that does not require you 
to start with an existing classifier score works in almost the same way as computing deletion diagnostics 
described in Chapter 12 for explanation. You train many attrition models, leaving one training data point 
out each time. You compute the standard deviation of the accuracy of each of these models and report 
this number as an indication of predictive uncertainty. In the uncertainty quantification context, this is 
known as a jackknife estimate. You can do the same thing for other metrics of trustworthiness as well, 
yielding an extended table of results that goes beyond Table 13.1 to also contain uncertainty 
quantification, shown in Table 13.2. Such a table should be displayed in a factsheet. 

Table 13.2. Result of testing several attrition models for multiple trust-related metrics with uncertainty quantified 
using standard deviation below the metric values. 

Model Accuracy Accuracy with 
Distribution 

Shift 

Disparate 
Impact 
Ratio 

Empirical 
Robust-

ness 

Faithful-
ness 

logistic regression 0.869 
(±0.042) 

0.775 
(±0.011) 

0.719 
(±0.084) 

0.113 
(±0.013) 

0.677 
(±0.050) 

neural network 0.849 
(±0.046) 

0.755 
(±0.013) 

1.127 
(±0.220) 

0.127 
(±0.021) 

0.316 
(±0.022) 

decision forest (boosting) 0.897 
(±0.041) 

0.846 
(±0.009) 

1.222 
(±0.346) 

0.284 
(±0.053) 

0.467 
(±0.016) 

decision forest (bagging) 0.877 
(±0.036) 

0.794 
(±0.003) 

0.768 
(±0.115) 

0.182 
(±0.047) 

0.516 
(±0.038) 

 
Chapter 12 noted that deletion diagnostics are costly to compute directly, which motivated influence 

functions as an approximation for explanation. The same kind of approximation involving gradients and 
Hessians, known as an infinitesimal jackknife, can be done for uncertainty quantification.19 Influence 
functions and infinitesimal jackknives may also be derived for some fairness, explainability, and 
robustness metrics.20  

Using a calibrated score or (infinitesimal) jackknife-based standard deviation as the quantification 
of uncertainty does not allow you to decompose the total predictive uncertainty into aleatoric and 
epistemic uncertainty, which can be important as you decide to approve the JCN Corporation proactive 
retention system. There are, however, algorithms applied during model training that let you estimate 
the aleatoric and epistemic uncertainties separately. These methods are like directly interpretable 
models (Chapter 12) and bias mitigation in-processing (Chapter 10) in terms of their place in the 

 

 
19Ryan Giordano, Will Stephenson, Runjing Liu, Michael I. Jordan, and Tamara Broderick. “A Swiss Army Infinitesimal Jack-
knife.” In: Proceedings of the International Conference on Artificial Intelligence and Statistics. Naha, Okinawa, Japan, Apr. 2019, pp. 
1139–1147. 
20Hao Wang, Berk Ustun, and Flavio P. Calmon. “Repairing without Retraining: Avoiding Disparate Impact with Counterfactual 
Distributions.” In: Proceedings of the International Conference on Machine Learning. Long Beach, California, USA, Jul. 2019, pp. 
6618–6627. Brianna Richardson and Kush R. Varshney. “Addressing the Design Needs of Implementing Fairness in AI via In-
fluence Functions.” In: INFORMS Annual Meeting. Anaheim, California, USA, Oct. 2021. 
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pipeline. The basic idea to extract the two uncertainties is as follows.21 The total uncertainty of a 
prediction, i.e. the predicted label 𝑌̂ given the features 𝑋, is measured using the entropy 𝐻( 𝑌̂ ∣∣ 𝑋 ) 
(remember entropy from Chapter 3). This prediction uncertainty includes both epistemic and aleatoric 
uncertainty; it is general and does not fix the choice of the actual classifier function 𝑦̂∗(⋅) within a 
hypothesis space ℱ. The epistemic uncertainty component captures the lack of knowledge of a good 
hypothesis space and a good classifier within a hypothesis space. Therefore, epistemic uncertainty goes 
away once you fix the choice of hypothesis space and classifier. All that remains is aleatoric uncertainty. 
The aleatoric uncertainty is measured by another entropy 𝐻( 𝑌̂ ∣∣ 𝑋, 𝑓 ), averaged across classifiers 𝑓(⋅) ∈
ℱ whose probability of being a good classifier is based on the training data. The epistemic uncertainty is 
then the difference between 𝐻( 𝑌̂ ∣∣ 𝑋 ) and the average 𝐻( 𝑌̂ ∣∣ 𝑋, 𝑓 ). 

There are a couple ways to obtain these two entropies and thereby the aleatoric and epistemic 
uncertainty. Bayesian methods, including Bayesian neural networks, are one large category of methods 
that learn full probability distributions for the features and labels, and thus the entropies can be 
computed from the probability distribution. The details of Bayesian methods are beyond the scope of 
this book.22 Another way to obtain the aleatoric and epistemic uncertainty is through ensemble methods, 
including ones involving bagging and dropout that explicitly or implicitly create several independent 
machine learning models that are aggregated (bagging and dropout were described in Chapter 7).23 The 
average classifier-specific entropy for characterizing aleatoric uncertainty is estimated by simply 
averaging the entropy of several data points for all the models in the trained ensemble considered 
separately. The total uncertainty is estimated by computing the entropy of the entire ensemble together.  

 

13.3 Communicating Test Results and Uncertainty 
Recall from Chapter 12, that you must overcome the cognitive biases of the consumer of an explanation. 
The same is true for communicating test results and uncertainty. Researchers have found that the 
presentation style has a large impact on the consumer.24 So don’t take the shortcut of thinking that your 
job is done once you’ve completed the testing and uncertainty quantification. You’ll have to justify your 
model validation to several different factsheet consumers (internal stakeholders within JCN 
Corporation, external regulators, et al.) and it is important for you to think about how you’ll 
communicate the results.  

 

 
21Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen Udluf. “Decomposition of Uncertainty in 
Bayesian Deep Learning for Efficient and Risk-Sensitive Learning.” In: Proceedings of the International Conference on Machine 
Learning. Stockholm, Sweden, Jul. 2018, pp. 1184–1193. 
22Alex Kendall and Yarin Gal. “What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?” In: Advances 
in Neural Information Processing Systems 31 (Dec. 2017), pp. 5580–5590.  
23Yarin Gal and Zoubin Gharahmani. “Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learn-
ing.” In: Proceedings of the International Conference on Machine Learning. New York, New York, USA, Jun. 2016, pp. 1050–1059. 
Aryan Mobiny, Pengyu Yuan, Supratik K. Moulik, Naveen Garg, Carol C. Wu, and Hien Van Nguyen. “DropConnect is Effective 
in Modeling Uncertainty of Bayesian Deep Networks.” In: Scientific Reports 11.5458 (Mar. 2021). Mohammad Hossein Shaker 
and Eyke Hüllermeier. “Aleatoric and Epistemic Uncertainty with Random Forests.” In: Proceedings of the International Sympo-
sium on Intelligent Data Analysis. Apr. 2020, pp. 444–456. 
24Po-Ming Law, Sana Malik, Fan Du, and Moumita Sinha. “The Impact of Presentation Style on Human-in-the-Loop Detection of 
Algorithmic Bias.” In: Proceedings of the Graphics Interface Conference. May 2020, pp. 299–307. 
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13.3.1 Visualizing Test Results 
Although tables of numbers such as Table 13.2 are complete and effective ways of conveying test results 
with uncertainty, there are some other options to consider. First, there are nascent efforts to use 
methods from explainability like contrastive explanations and influence functions to help consumers 
understand why a model has a given fairness metric or uncertainty level.25 More importantly, 
visualization is a common approach. 

The various trust dimension metrics you have tested are often presented as bar graphs. The trust 
metrics of multiple models can be compared with adjacent bars as in Figure 13.3. However, it is not clear 
whether this visualization is more effective than simply presenting a table like Table 13.1. Specifically, 
since model comparisons are to be done across dimensions that are on different scales, one dimension 
with a large dynamic range can warp the consumer’s perception. Also, if some metrics have better values 
when they are larger (e.g. accuracy) and other metrics have better values when they are smaller (e.g. 
statistical parity difference), the consumer can get confused when making comparisons. Moreover, it is 
difficult to see what is going on when there are several models (several bars). 

 
Figure 13.3. Bar graph of trust metrics for four different models.  

An alternative is the parallel coordinate plot, which is a line graph of the different metric dimensions 
next to each other, but normalized separately.26 An example is shown in Figure 13.4. The separate 
normalization per metric permits you to flip the direction of the axis so that, for example, higher is 
always better. (This flipping has been done for empirical robustness in the figure.) Since the lines can 

 

 
25Javier Antorán, Umang Bhatt, Tameem Adel, Adrian Weller, and José Miguel Hernández-Lobato. “Getting a CLUE: A Method 
for Explaining Uncertainty Estimates.” In: Proceedings of the International Conference on Learning Representations. May 2021.  
26Parallel coordinate plots have interesting mathematical properties. For more details, see: Rida E. Moustafa. “Parallel Coordi-
nate and Parallel Coordinate Density Plots.” In: WIREs Computational Statistics 3 (Mar./Apr. 2011), pp. 134–148.  
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overlap, there is less of a crowding effect from too many models being compared than with bar graphs. 
(If there are so so many models that even the parallel coordinate plot becomes unreadable, an alternative 
is the parallel coordinate density plot, which gives an indication of how many lines there are in every part 
of the plot using shading.) The main purpose of parallel coordinate plots is precisely to compare items 
along several categories with different metrics. Conditional parallel coordinate plots, an interactive version 
of parallel coordinate plots, allow you to expand upon submetrics within a higher-level metric.27 For 
example, if you create an aggregate metric that combines several adversarial robustness metrics 
including empirical robustness, CLEVER score, and others, an initial visualization will only contain the 
aggregate robustness score, but can be expanded to show the details of the other metrics it is composed 
of. Parallel coordinate plots can be wrapped around a polygon to yield a radar chart, an example of which 
is shown in Figure 13.5. 

 
Figure 13.4. Parallel coordinate plot of trust metrics for four different models.  

 

 
27Daniel Karl I. Weidele. “Conditional Parallel Coordinates.” In: Proceedings of the IEEE Visualization Conference. Vancouver, Can-
ada, Oct. 2019, pp. 221–225. 
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Figure 13.5. Radar chart of trust metrics for four different models.  

It is not easy to visualize metrics such as disparate impact ratio in which both small and large values 
indicate poor performance and intermediate values indicate good values. In these cases, and also to 
appeal to less technical consumers in the case of all metrics, simpler non-numerical visualizations 
involving color patches (e.g. green/yellow/red that indicate good/medium/poor performance), 
pictograms (e.g. smiley faces or stars), or Harvey balls (○/◔/◑/◕/●) may be used instead. See Figure 
13.6 for an example. However, these visualizations require thresholds to be set in advance on what 
constitutes a good, medium, or poor value. Eliciting these thresholds is part of value alignment, covered 
in Chapter 14. 

 
Model Accuracy Accuracy with 

Distribution 
Shift 

Disparate 
Impact 
Ratio 

Empirical 
Robust-

ness 

Faithful-
ness 

logistic regression      

neural network      

decision forest (boosting)      

decision forest (bagging)      

Figure 13.6. Simpler non-numeric visualization of trust metrics for four different models.  
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13.3.2 Communicating Uncertainty 
It is critical that you not only present the test result facts in a meaningful way, but also present the 
uncertainty around those test results to ensure that employees receiving and not receiving retention 
incentives, their managers, other JCN Corporation stakeholders and external regulators have full 
transparency about the proactive retention system.28 Van der Bles et al. give nine levels of 
communicating uncertainty:29 

1. explicit denial that uncertainty exists, 

2. no mention of uncertainty, 

3. informally mentioning the existence of uncertainty, 

4. a list of possibilities or scenarios, 

5. a qualifying verbal statement, 

6. a predefined categorization of uncertainty, 

7. a rounded number, range or an order-of-magnitude assessment, 

8. a summary of a distribution, and 

9. a full explicit probability distribution. 

You should not consider the first five of these options.  
Similar to the green/yellow/red categories described above for test values, predefined categorizations 

of uncertainty, such as ‘extremely uncertain,’ ‘uncertain,’ ‘certain,’ and ‘extremely certain’ may be 
useful for less technical consumers. In contrast to green/yellow/red, categories of uncertainty need not 
be elicited during value alignment because they are more universal concepts that are not related to the 
actual metrics or use case. Ranges express the possibility function (presented in Chapter 3), and can also 
be useful presentations for less technical consumers. 

The last two options are more appropriate for in-depth communication of uncertainty to consumers. 
Summaries of probability distributions, like the standard deviations given in Table 13.2, can also be shown 
in bar graphs using error bars. Box-and-whisker plots are like bar graphs, but show not only the standard 
deviation, but also outliers, quantiles and other summaries of uncertainty through a combination of 
marks, lines, and shaded areas. Violin plots are also like bar graphs, but show the full explicit probability 
distribution through their shape; the shape of the bar follows the pdf of the metric turned on its side. 
Examples of each are shown in Figure 13.7, Figure 13.8, and Figure 13.9. Parallel coordinate plots and 
radar charts can also contain error bars or shading to indicate summaries of probability distributions, 
but may be difficult to interpret when showing more than two or three models. 

 

 
28Umang Bhatt, Javier Antorán, Yunfeng Zhang, Q. Vera Liao, Prasanna Sattigeri, Riccardo Fogliato, Gabrielle Gauthier 
Melançon, Ranganath Krishnan, Jason Stanley, Omesh Tickoo, Lama Nachman, Rumi Chunara, Madhulika Srikumar, Adrian 
Weller, and Alice Xiang. “Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty.” In: 
Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society. Jul. 2021, pp. 401–413. 
29Anne Marthe van der Bles, Sander van der Linden, Alexandra L. J. Freeman, James Mitchell, Ana B. Galvao, Lisa Zaval, and 
David J. Spiegelhalter. “Communicating Uncertainty About Facts, Numbers and Science.” In: Royal Society Open Science 
6.181870 (Apr. 2019). 
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Figure 13.7. Bar graph with error bars of trust metrics for four different models.  

 
Figure 13.8. Box-and-whisker plot of trust metrics for four different models. 
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Figure 13.9. Violin plot of trust metrics for four different models.  

 

13.4 Maintaining Provenance 
In principle, factsheets are a good idea to achieve transparency, show conformity to regulations, and 
increase trustworthiness in JCN Corporation’s proactive retention system. But if consumers of 
factsheets think JCN Corporation is lying to them, is there anything you can do to convince them 
otherwise (assuming all the facts are impeccable)? More subtly, how can you show that facts haven’t 
been tampered with or altered after they were generated? Providing such assurance is hard because the 
facts are generated by many different people and processes throughout the development lifecycle, and 
just one weak link can spoil the entire factsheet. Provenance of the facts is needed. 

One solution is a version of the fact flow tool with an immutable ledger as its storage back-end. An 
immutable ledger is a system of record whose entries (ideally) cannot be changed, so all facts are posted 
with a time stamp in a way that is very difficult to tamper. It is append-only, so you can only write to it 
and not change or remove any information. A class of technologies that implements immutable ledgers 
is blockchain networks, which use a set of computers distributed across many owners and geographies to 
each provably validate and store a copy of the facts. The only way to beat this setup is by colluding with 
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more than half of the computer owners to change a fact that has been written, which is a difficult 
endeavor. Blockchains provide a form of distributed trust. 

There are two kinds of blockchains: (1) permissioned (also known as private) and (2) permissionless (also 
known as public). Permissioned blockchains restrict reading and writing of information and ownership 
of machines to only those who have signed up with credentials. Permissionless blockchains are open to 
anyone and can be accessed anonymously. Either may be an option for maintaining the provenance of 
facts while making the attrition prediction model more trustworthy. If all consumers are within the 
corporation or are among a fixed set of regulators, then a permissioned blockchain network will do the 
trick. If the general public or others external to JCN Corporation are the consumers of the factsheet, then 
a permissionless blockchain is the preferred solution. 

Posting facts to a blockchain solves the problem of maintaining the provenance of facts, but what if 
there is tampering in the creation of the facts themselves? For example, what if a data scientist discovers 
a small bug in the feature engineering code that shouldn’t affect model performance very much and 
fixes it. Retraining the entire model will go on through the night, but there’s a close-of-business deadline 
to submit facts. So the data scientist submits facts from a previously trained model. Shortcuts like this 
can also be prevented with blockchain technologies.30 Since the training of many machine learning 
models is done in a deterministic way by an iterative procedure (such as gradient descent), other 
computers in the blockchain network can endorse and verify that the training computation was actually 
run by locally rerunning small parts of the computation starting from checkpoints of the iterations 
posted by the data scientist. The details of how to make such a procedure tractable in terms of 
computation and communication costs is beyond the scope of the book. 

In your testing, you found that all of the models were lacking in fairness, so you sent them back to 
the data scientists to add better bias mitigation, which they did to your satisfaction. The various 
stakeholders are satisfied now as well, so you can go ahead and sign for the system’s conformity and 
push it on to the deployment stage of the lifecycle. Alongside the deployment efforts, you also release a 
factsheet for consumption by the managers within JCN Corporation who will be following through on 
the machine’s recommended retention actions. Remember that one of the promises of this new machine 
learning system was to make employment at JCN Corporation more equitable, but that will only happen 
if the managers adopt the system’s recommendations.31 Your efforts at factsheet-based transparency 
have built enough trust among the managers so they are willing to adopt the system, and JCN 
Corporation will have fairer decisions in retention actions. 
 

 

 
30Ravi Kiran Raman, Roman Vaculin, Michael Hind, Sekou L. Remy, Eleftheria K. Pissadaki, Nelson Kibichii Bore, Roozbeh 
Daneshvar, Biplav Srivastava, and Kush R. Varshney. “A Scalable Blockchain Approach for Trusted Computation and Verifiable 
Simulation in Multi-Party Collaborations.” In: Proceedings of the IEEE International Conference on Blockchain and Cryptocurrency. 
May 2019, Seoul, Korea, pp. 277–284. 
31There have been instances where a lack of transparency in machine learning algorithms designed to reduce inequity were 
adopted to a greater extent by privileged decision makers and adopted to a lesser extent by unprivileged decision makers, 
which ended up exacerbated inequity instead of tamping it down. See: Shunyung Zhang, Kannan Srinivasan, Param Vir Singh, 
and Nitin Mehta. “AI Can Help Address Inequity—If Companies Earn Users’ Trust.” In: Harvard Business Review (Sep. 2021). URL: 
https://hbr.org/2021/09/ai-can-help-address-inequity-if-companies-earn-users-trust. 
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13.5 Summary 
▪ Transparency is a key means for increasing the third attribute of trustworthiness in machine 

learning (openness and human interaction). 

▪ Fact flow is a mechanism for automatically collecting qualitative and quantitative facts about a 
development lifecycle. A factsheet is a collection of facts, appropriately rendered for a given 
consumer, that enables transparency and conformity assessment. 

▪ Model validation and risk management involve testing models across dimensions of trust, 
computing the uncertainties of the test results, capturing qualitative facts about the development 
lifecycle, and documenting and communicating these items transparently via factsheets. 

▪ Testing machine learning models is a unique endeavor different from other software testing 
because of the oracle problem: not knowing in advance what the behavior should be. 

▪ Visualization helps make test results and their uncertainties more accessible to various 
consumer personas. 

▪ Facts and factsheets become more trustworthy if their provenance can be maintained and 
verified. Immutable ledgers implemented using blockchain networks provide such capabilities. 
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14  
Value Alignment 

The first two chapters in this part of the book on interaction were focused on the communication from 
the machine system to the human consumer. This chapter is focused on the other direction of 
interaction: from humans to the machine system. Imagine that you’re the director of the selection 
committee of Alma Meadow, a (fictional) philanthropic organization that invests in early-stage social 
enterprises and invites the founders of those mission-driven organizations to participate in a two-year 
fellowship program. Alma Meadow receives about three thousand applications per year and selects 
about thirty of them to be fellowship recipients. As the director of this process, you are considering using 
machine learning in some capacity to improve the way it works. As such, you are a problem owner in the 
problem specification phase of an incipient machine learning lifecycle. Your main concern is that you 
do not sacrifice Alma Meadow’s mission or values in selecting social impact startups.  

“We need to have more conversations where we're doing this translation between 
policy, world outcome impact, what we care about and then all the math and data and 
tech stuff is in the back end trying to achieve these things.” 

—Rayid Ghani, machine learning and public policy researcher at Carnegie Mellon 
University 

Values are fundamental beliefs that guide actions. They indicate the importance of various things and 
actions to a person or group of people, and determine the best ways to live and behave. Embedding Alma 
Meadow’s values in the machine learning system that you are contemplating is known as value alignment 
and has two parts.1 The first part is technical: how to encode and elicit values in such a way that machine 
learning systems can access them and behave accordingly. The second part is normative: what the actual 
values are. (The word normative refers to norms in the social rather than mathematical sense: standards 

 

 
1Iason Gabriel. “Artificial Intelligence, Values, and Alignment.” In: Minds and Machines 30 (Oct. 2020), pp. 411–437. 
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or principles of right action.) The focus of this chapter is on the first part of value alignment: the technical 
aspects for you, your colleagues, and other stakeholders to communicate your values (likely influenced 
by laws and regulations). The chapters in the sixth and final part of the book on purpose delve into the 
values themselves.  

“There is scientific research that can be undertaken to actually understand how to 
go from these values that we all agree on to embedding them into the AI system that’s 
working with humans.” 

—Francesca Rossi, AI ethics global leader at IBM 

Before diving into the technical details of value alignment, let’s first take a step back and talk about 
two ways of expressing values: (1) deontological and (2) consequentionalist.2 At a simplified level, 
deontological values are about defining good actions without concern for their outcomes, and 
consequentialist values are focused on defining outcomes that are good for all people. As an example, Alma 
Meadow has two deontological values: at least one of the recipients of the fellowship per year will be a 
formerly incarcerated individual and fellowship recipients’ social change organizations cannot promote 
a specific religious faith. These explicit rules or constraints on the action of awarding fellowships do not 
look into the effect on any outcome. In contrast, one of Alma Meadow’s consequentionalist values is that 
a fellowship recipient chosen from the applicant pool leads a social impact startup that will most 
improve the worldwide disability-adjusted life-years (DALY) in the next ten years. DALY is a metric that 
indicates the combined morbidity and mortality of the global disease burden. (It cannot be perfectly 
known which applicant satisfies this at the time the decision is made due to uncertainty, but it can still 
be a value.) It is a consequentionalist value because it is in terms of an outcome (DALY). 

There is some overlap between deontology and procedural justice (described in Chapter 10), and 
between consequentionalism and distributive justice. One important difference between 
consequentialism and distributive justice is that in operationalizing distributive justice through group 
fairness as done in Chapter 10, the population over whom good outcomes are sought are the affected 
users, and that the justice/fairness is limited in time and scope to just the decision itself.3 In contrast, in 
consequentionalism, the good is for all people throughout the broader society and the outcomes of 
interest are not only the immediate ones, but the longer term ones as well. Just like distributive justice 
was the focus in Chapter 10 rather than procedural justice because of its more natural operationalization 
in supervised classification, consequentialism is the focus here rather than deontology. However, it 
should be noted that deontological values may be elicited from people as rules and used as additional 
constraints to the Alma Meadow applicant screening model. In certain situations, such constraints can 
be easily added to the model without retraining.4 

 

 
2Joshua Greene, Francesca Rossi, John Tasioulas, Kristen Brent Venable, and Brian Williams. “Embedding Ethical Principles 
in Collective Decision Support Systems.” In: Proceedings of the AAAI Conference on Artificial Intelligence. Phoenix, Arizona, USA, 
Feb. 2016, pp. 4147–4151.  
3Dallas Card and Noah A. Smith. “On Consequentialism and Fairness.” In: Frontiers in Artificial Intelligence 3.34 (May 2020).  
4Elizabeth M. Daly, Massimiliano Mattetti, Öznur Alkan, and Rahul Nair. “User Driven Model Adjustment via Boolean Rule Ex-
planations.” In: Proceedings of the AAAI Conference on Artificial Intelligence. Feb. 2021, pp. 5896–5904. 
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It is critical not to take any shortcuts in value alignment because it forms the foundation for the other 
parts of the lifecycle. By going through the value alignment process, you arrive at problem specifications 
that data scientists try to satisfy using machine learning models, bias mitigation algorithms, 
explainability algorithms, adversarial defenses, etc. during the modeling phase of the lifecycle.  

One thing to be wary of is underspecification that allows machine learning models to take shortcuts 
(also known as specification gaming and reward hacking in the value alignment literature).5 This concept 
was covered in detail in Chapter 9, but is worth repeating. Any values that are left unsaid are free 
dimensions for machine learning algorithms to use as they please. So for example, even if the values you 
provide to the machine don’t prioritize fairness, you might still be opposed to an extremely extremely 
unfair model in spirit. If you don’t include at least some specification for a minimal level of fairness, the 
model may very well learn to be extremely unfair if it helps achieve specified values in accuracy, 
uncertainty quantification, and privacy. 

In the remainder of the chapter, you will go through the problem specification phase for selecting 
Alma Meadow’s fellows using supervised machine learning, insisting on value alignment. By the end, 
you’ll have a better handle on the following questions. 

▪ What are the different levels of consequentionalist values that you should consider? 

▪ How should these values be elicited from individual people and fused together when elicited from 
a group of people? 

▪ How do you put together elicited values with transparent documentation covered in Chapter 13 
to govern machine learning systems? 

 

14.1 Four Levels of Values in Trustworthy Machine Learning 
When you were first starting to think about improving Alma Meadow’s process for winnowing and 
selecting applications using machine learning, you had some rough idea why you wanted to do it 
(improving efficiency and transparency). However, you didn’t have a progression of questions to work 
through as you figured out whether and in which parts of the selection process you should use machine 
learning, which pillars of trustworthy machine learning you should worry about, and how to make your 
worries quantitative. Let’s list a series of four questions to help you gain clarity. (You’ll be aided in 
answering them in the next section.) 

1. Should you work on this problem?  

2. Which pillars of trustworthiness are of concern? 

3. What are the appropriate metrics for those pillars of trustworthiness? 

4. What are acceptable ranges of the metric values? 

The first question you should ask is whether you should even work on a problem. The answer may 
be no. If you stop and think for a minute, many problems are not problems to be solved. At face value, 

 

 
5Victoria Krakovna, Jonathan Uesato, Vladimir Mikulik, Matthew Rahtz, Tom Everitt, Ramana Kumar, Zac Kenton, Jan Leike, 
and Shane Legg. “Specification Gaming: The Flip Side of AI Ingenuity.” In: DeepMind Blog (Apr. 2020). URL: https://deep-
mind.com/blog/article/Specification-gaming-the-flip-side-of-AI-ingenuity.  
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evaluating three thousand applications and awarding fellowships seems not to be oppressive, harmful, 
misguided, or useless, but nevertheless, you should think deeply before answering. 

“Technical audiences are never satisfied with the fix being ‘just don’t do it.’” 

—Kristian Lum, statistician at University of Pennsylvania 

Even if a problem is one that should be solved, machine learning is not always the answer. Alma Meadow 
has used a manual process to sort through applications for over thirty years, and has not been worse for 
wear. So why make the change now? Are there only some parts of the overall evaluation process for 
which machine learning makes sense? 

The second question is more detailed. Among the different aspects of trustworthiness covered in the 
book so far, such as privacy, consent, accuracy, distributional robustness, fairness, adversarial 
robustness, interpretability, and uncertainty quantification, which ones are of the greatest concern? Are 
some essential and others only nice-to-haves? The third question takes the high-level elements of 
trustworthiness and brings them down to the level of specific metrics. Is accuracy, balanced accuracy, 
or AUC a more appropriate metric? How about the choice between statistical parity difference and 
average absolute odds difference? Lastly, the fourth question focuses on the preferred ranges of values 
of the metrics selected in the third question. Is a Brier score less than or equal to 0.25 acceptable? 
Importantly, there are relationships among the different pillars; you cannot create a system that is 
perfect in all respects. For example, typical differential privacy methods worsen fairness and 
uncertainty quantification.6 Explainability may be at odds with other dimensions of trustworthiness.7 
Thus in the fourth question, it is critical to understand the relationships among metrics of different 
pillars and only specify ranges that are feasible.  

 

14.2 Representing and Eliciting Values 
Now that you have an overview of the four different levels of values for the supervised machine learning 
system you’re contemplating for Alma Meadow’s evaluation process, let’s dig a little bit deeper to 
understand how to represent those values and how to make it easier for you to figure out what your 
values are.  

14.2.1 Should You Work on This Problem? 
A helpful tool in determining your values is a checklist of possible concerns along with case studies 
illustrating each of these concerns in real-world applications of machine learning related to your task of 
evaluating applications. An example of such a checklist and related case studies is the Ethical OS 

 

 
6Marlotte Pannekoek and Giacomo Spigler. “Investigating Trade-Offs in Utility, Fairness and Differential Privacy in Neural Net-
works.” arXiv:2102.05975, 2021. Zhiqi Bu, Hua Wang, Qi Long, and Weijie J. Su. “On the Convergence of Deep Learning with 
Differential Privacy.” arXiv:2106.07830, 2021.  
7Adrian Weller. “Transparency: Motivations and Challenges.” In: Explainable AI: Interpreting, Explaining and Visualizing Deep 
Learning. Ed. by Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and Klaus-Robert Müller. Cham, Swit-
zerland: Springer, 2019, pp. 23–40. 
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Toolkit,8 which lists eight different broad consequences of the machine learning system that you should 
ponder: 

1. Disinformation: the system helps subvert the truth at a large scale. 

2. Addiction: the system keeps users engaged with it beyond what is good for them. 

3. Economic inequality: the system contributes to income and wealth inequity by serving only 
well-heeled users or by eliminating low-income jobs. 

4. Algorithmic bias: the system amplifies social biases. 

5. Surveillance state: the system enables repression of dissent. 

6. Loss of data control: the system causes people to lose control of their own personal data and 
any monetization it might lead to. 

7. Surreptitious: the system does things that users don’t know about. 

8. Hate and crime: the system makes bullying, stalking, fraud, or theft easier. 

Links to case studies accompany each of these checklist items in the Ethical OS Toolkit. Some of the case 
studies show when the item has happened in the real-world, and some show actions taken to prevent 
such items from happening. Another source of case studies is the continually-updated AI Incident 
Database.9 Part 6 of the book, which is focused on purpose, touches on some of the items and case studies 
as well. 

Starting with the checklist, your first step is to decide which items are good and which items are bad. 
In practice, you will read through the case studies, compare them to the Alma Meadow use case, spend 
some time thinking, and come up with your judgement. Many people, including you, will mark each of 
the eight items as bad, and judge the overall system to be too bad to proceed if any of them is true. But 
values are not universal. Some people may mark some of the checklist items as good. Some judgements 
may even be conditional. For example, with all else being equal, you might believe that algorithmic bias 
(item 4) is good if economic inequality (item 3) is false. In this second case and in even more complicated 
cases, reasoning about your preferences is not so easy. 

CP-nets are a representation of values, including conditional ones, that help you figure out your 
overall preference for the system and communicate it to the machine.10 (The ‘CP’ stands for ‘conditional 
preference.’) CP-nets are directed graphical models with each node representing one attribute (checklist 
item) and arrows indicating conditional relationships. Each node also has a conditional preference table 
that gives the preferred values. (In this way, they are similar to causal graphs and structural equations 
you learned about in Chapter 8.) The symbol ≻ represents a preference relation; the argument on the 
left is preferred to the one on the right. The CP-net of the first case above (each of the eight items is bad) 
is given in Figure 14.1. It has an additional node at the bottom capturing the overall preference for 
working on the problem, which is conditioned on the eight items. There is a simple, greedy algorithm 

 

 
8URL: https://ethicalos.org/wp-content/uploads/2018/08/Ethical-OS-Toolkit-2.pdf  
9Sean McGregor. “Preventing Repeated Real World AI Failures by Cataloging Incidents: The AI Incident Database.” In: Proceed-
ings of the AAAI Conference on Artificial Intelligence. Feb. 2021, pp. 15458–15463.  
10Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, and David Poole. “CP-Nets: A Tool for Representing and 
Reasoning with Conditional Ceteris Paribus Preference Statements.” In: Journal of Artificial Intelligence Research 21.1 (Jan. 2004), 
pp. 135–191.   
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for figuring out the most preferred instantiation of the values from CP-nets. However, in this case it is 
easy to figure out the answer without an algorithm: it is the system that does not satisfy any of the eight 
checklist items and says to go ahead and work on the problem. In more general cases with complicated 
CP-nets, the inference algorithm is helpful.  

 
Figure 14.1. An example CP-net for whether Alma Meadow should work on the application evaluation problem. 
At the top is the graphical model. At the bottom are the conditional preference tables. Accessible caption. Eight 
nodes disinformation, addiction, economic inequity, algorithmic bias, surveillance state, loss of data 
control, surreptitious, and hate and crime all have the node work on problem as their child. All prefer-
ences for the top eight nodes are no ≻ yes. In all configurations of yeses and noes, the work on problem 
preference is no ≻ yes, except when all top eight nodes have configuration no, when it is no ≻ yes. 

With the values decided, it is time to go through the checklist items and determine whether they are 
consistent with your most preferred values: 

1. Disinformation = no: evaluating applications from social entrepreneurs is unlikely to subvert 
the truth.  

2. Addiction = no: this use of machine learning is not likely to lead to addiction. 

3. Economic inequality = partly yes, partly no: it is possible the system could only select applica-
tions that have very technical descriptions of the social impact startup’s value proposition and 
have been professionally polished. However, this possibility is not enough of a concern to com-
pletely stop the use of machine learning. What this concern does suggest, though, is that ma-
chine learning only be used to prioritize semi-finalists rather than later in the evaluation pro-
cess because human evaluators may find gems that seem unusual to the machine. 
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4. Algorithmic bias = no: Alma Meadow has been extremely proactive in preventing social bias 
with respect to common protected attributes in its human evaluations in past years, so the 
training data will not yield much social bias in models. 

5. Surveillance state = no: the machine learning system is unlikely to be an instrument of oppres-
sion. 

6. Loss of data control = no: by sharing their ideas in the application, budding social entrepre-
neurs could feel that they are giving up their intellectual property, but Alma Meadow has gone 
to great lengths to ensure that is not the case. In fact, toward one of its values, Alma Meadow 
provides information to applicants on how to construct confidential information assignment 
agreements. 

7. Surreptitious = no: the system is unlikely to do anything users don’t know about. 

8. Hate and crime = no: the system is unlikely to enable criminal activities. 

None of the items are properties of the system, including economic inequality when restricting the use 
of machine learning only to a first-round prioritization. This is consistent with your most-preferred 
values, so you should work on this problem. 

14.2.2 Which Pillars of Trustworthiness Are of Concern? 
Now that you have passed the first level of value judgement, you have to determine which elements of 
trust are your top priority in the feature engineering and modeling phases. Rather than having you take 
on the very difficult task of trying to directly state a preference ordering, e.g. fairness ≻ explainability ≻ 
distributional robustness ≻ uncertainty quantification ≻ privacy ≻ adversarial robustness, let’s create a 
CP-net with some considerations that are easier to answer. To make things even easier, let’s assume that 
you are in a predictive modeling situation, not causal modeling of interventions. Let’s take accuracy and 
similar performance metrics from Chapter 6 out of the equation, since basic competence is always 
valued. Furthermore, assume the application is high-risk (true for Alma Meadow’s applicant selection), 
so the different elements of trustworthiness are part of your value consideration, and assume that 
consent and transparency are required. Then a construction of the CP-net for pillars of trustworthiness 
begins with the following seven properties: 

1. Disadvantage (no, yes): the decisions have the possibility of giving systematic disadvantage to 
certain groups or individuals. 

2. Human-in-the-loop (no, yes): the system predictions support a human decision-maker. 

3. Regulator (no, yes): regulators (broadly-construed) audit the model. 

4. Recourse (no, yes): affected users of the system have the ability to challenge the decision they 
receive. 

5. Retraining (no, yes): the model is retrained frequently to match the time scale of distribution 
shift. 

6. People data (not about people, about people but not SPI, SPI): the system may use data about 
people which may be sensitive personal information (SPI). 

7. Security (external, internal and not secure, secure): the data, model interface, or software code 
are available either externally or only internally, and may be kept highly secured. 
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Once you have given these seven system preferences, giving conditional preferences for the different 
elements of trustworthiness is more compact. They can simply be given as high or low priority values 
based on just a few of the system preferences. For example, if there is a possibility of systematic 
disadvantage and the problem involves people data, then giving attention to fairness may be highly 
valued. Putting everything together yields a CP-net like the one in Figure 14.2. 

 
Figure 14.2. An example CP-net for which pillars of trustworthiness Alma Meadow should prioritize when devel-
oping a model for the application evaluation problem. At the top is the graphical model. At the bottom are the con-
ditional preference tables. Accessible caption. In the graphical model, there are edges from disadvantage 
to fairness, people data to fairness, human-in-the-loop to explainability, regulator to explainability, 
recourse to explainability, human-in-the-loop to uncertainty quantification, regulator to uncertainty 
quantification, retraining to uncertainty quantification, retraining to distributional robustness, people 
data to privacy, security to privacy, and security to adversarial robustness. The conditional preference 
tables list many different complicated preferences. 



212 | Trustworthy Machine Learning 

The top-level system property preferences will be highly specific to your Alma Meadow application 
evaluation use case. You and other problem owners have the requisite knowledge at your fingertips to 
provide your judgements. The conditional preferences connecting the top-level properties with the 
specific elements of trustworthiness (fairness, explainability, etc.) are more generic and generalizable. 
Even if the edges and conditional preference tables given in the figure are not 100% universal, they are 
close to universal and can be used as-is in many different application domains.  

In the Alma Meadow example in Figure 14.2, your specific judgements are: systematic disadvantage 
is possible, you prefer a human decision-maker in the loop, there will not be a regulator audit, you prefer 
that social entrepreneur applicants have an opportunity for recourse, you prefer the system not be 
retrained frequently, you prefer that the applications contain data about people (both about the 
applicant and the population their organization serves) but not anything personally-sensitive, and you 
prefer that the data and models be secured. Based on these values and the conditional preferences lower 
in the CP-net, the following pillars are inferred to be higher priority: fairness, explainability, uncertainty 
quantification, and distributional robustness. Privacy and adversarial robustness are inferred to be 
lower priority. 

14.2.3 What Are the Appropriate Metrics? 
After the second stage of value alignment, you know which pillars of trustworthiness are higher priority 
and you can move on to figuring out specific metrics within the pillars. This problem is known as 
performance metric elicitation. In previous chapters, you’ve already learned about different considerations 
when making these determinations. For example, in Chapter 6, it was discussed that AUC is an 
appropriate basic performance metric when you desire good performance across all operating points. 
As another example, Table 10.1 summarized the considerations in determining group fairness metrics: 
whether you are testing data or models, whether there is social bias in the measurement process, and 
whether the favorable label is assistive or non-punitive. We will not repeat those arguments here, which 
you should definitely go through, but will mention another tool to help you in metric elicitation. 

In the previous elicitation task, it was difficult to go straight to a total preference ordering for the 
different pillars of trustworthiness; the task was made easier by asking simpler and more structured 
judgements using CP-nets. There’s a similar story here, but using pairwise comparisons instead of CP-
nets. The elicitation process is like an optometrist helping you home in on your preferred eye 
prescription by having you compare a sequence of pairs of lenses. Here, the pairwise comparisons are 
between different possible metrics within a given pillar. By comparing the values of two metrics for 
many models, you get a sense of what they’re indicating and can choose one over the other. If the pairs 
are chosen in an intelligent way and you do enough comparisons, you will converge onto your preferred 
metric. One such intelligent way efficiently elicits basic performance metrics and fairness metrics by 
taking advantage of their linearity or quadraticity properties and showing users a sequence of pairs of 
confusion matrices (recall confusion matrices from Chapter 6).11 Confusion matrices may be too difficult 
for different stakeholders to reason about in their typical format as a 2×2 matrix of numbers; alternate 
visualizations of confusion matrices such as tree diagrams, flow charts, and matrices presented with 

 

 
11Gaurush Hiranandani, Harikrishna Narasimhan, and Oluwasanmi Koyejo. “Fair Performance Metric Elicitation.” In: Advances 
in Neural Information Processing Systems 33 (Dec. 2020), pp. 11083–11095. 
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contextual information may be used instead.12 Another approach based on pairwise comparisons is 
known as the analytical hierarchy process; it asks for numerical ratings (one to nine) in the comparison so 
that you not only indicate which metric is better, but by roughly how much as well.13  

14.2.4 What are Acceptable Ranges of the Metric Values? 
Once specific metrics have been selected, the final level of value alignment is determining the 
quantitative ranges of preferred metric values for the Alma Meadow semi-finalist selection model. Since 
the different elements of trustworthiness and their relevant metrics are interrelated, including some 
that are tradeoffs, this level of elicitation should not be approached one metric at a time like the previous 
metric elicitation, but more holistically.  

The starting point is a feasible set of metric values, shown schematically in Figure 14.3. In this 
schematic, the quantitative test results for a single model (shown as tables, bar graphs, parallel 
coordinate plots, and radar charts in Chapter 13) are mapped to a single point inside the feasible region. 
From Chapter 6, you know that the optimal Bayes risk is fundamentally the best you can ever do for cost-
weighted accuracy. As also mentioned in that chapter, it turns out that you can empirically estimate the 
optimal Bayes risk from the historical Alma Meadow applications data you have.14 Moreover, 
fundamental theoretical relationships between metrics from different elements of trustworthiness are 
starting to be researched using the concept of Chernoff information15 from detection theory and 
information theory (they include both tradeoffs and non-tradeoffs): a so-called unified theory of trust.16 
Once that research is completed, the schematic diagram of Figure 14.3 can be actualized for a given 
machine learning task and the fourth value alignment question (ranges of values of different metrics) 
can be more easily stated. By explicitly knowing the feasible set of metric values, you can confidently 
make choices that are possible for the Alma Meadow semi-finalist prioritization model instead of wishful 
thinking. 

 

 
12Hong Shen, Haojian Jin, Ángel Alexander Cabrera, Adam Perer, Haiyi Zhu, and Jason I. Hong. “Designing Alternative Repre-
sentations of Confusion Matrices to Support Non-Expert Public Understanding of Algorithm Performance.” In: Proceedings of 
the ACM on Human-Computer Interaction 4.CSCW2 (Oct. 2020), p. 153.  
13Yunfeng Zhang, Rachel K. E. Bellamy, and Kush R. Varshney. “Joint Optimization of AI Fairness and Utility: A Human-Cen-
tered Approach.” In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society. New York, New York, USA, Feb. 2020, pp. 
400–406. 
14Visar Berisha, Alan Wisler, Alfred O. Hero, III, and Andreas Spanias. “Empirically Estimable Classification Bounds Based on a 
Nonparametric Divergence Measure.” In: IEEE Transactions on Signal Processing 64.3 (Feb. 2016), pp. 580–591. Ryan Theisen, 
Huan Wang, Lav R. Varshney, Caiming Xiong, and Richard Socher. “Evaluating State-of-the-Art Classification Models Against 
Bayes Optimality.” In: Advances in Neural Processing Systems 34 (Dec. 2021). 
15Frank Nielsen. “An Information-Geometric Characterization of Chernoff Information.” In: IEEE Signal Processing Letters 20.3 
(Mar. 2013), pp. 269–272. 
16Sanghamitra Dutta, Dennis Wei, Hazar Yueksel, Pin-Yu Chen, Sijia Liu, and Kush R. Varshney, “Is There a Trade-Off Between 
Fairness and Accuracy? A Perspective Using Mismatched Hypothesis Testing.” In: Proceedings of the International Conference on 
Machine Learning. Jul. 2020, pp. 2803–2813. Kush R. Varshney, Prashant Khanduri, Pranay Sharma, Shan Zhang, and Pramod 
K. Varshney, “Why Interpretability in Machine Learning? An Answer Using Distributed Detection and Data Fusion Theory.” In: 
Proceedings of the ICML Workshop on Human Interpretability in Machine Learning. Stockholm, Sweden, Jul. 2018, pp. 15–20. Zuxing 
Li, Tobias J. Oechtering, and Deniz Gündüz. “Privacy Against a Hypothesis Testing Adversary.” In: IEEE Transactions on Infor-
mation Forensics and Security 14.6 (Jun. 2019), pp. 1567–1581.  
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Figure 14.3. Schematic diagram of feasible set of trust-related metrics. Accessible caption. A shaded region 
enclosed by three curved segments is labeled feasible. It is surrounded by five axes: accuracy, Brier 
score, empirical robustness, faithfulness, and disparate impact ratio. 

The feasible set is a good starting point, but there is still the question of deciding on the preferred 
ranges of the metrics. Two approaches may help. First, a value alignment system can automatically 
collect or create a corpus of many models for the same or similar prediction task and compute their 
metrics. This will yield an empirical characterization of the interrelationships among the metrics.17 You 
can better understand your choice of metric values based on their joint distribution in the corpus. The 
joint distribution can be visualized using a parallel coordinate density plot mentioned in Chapter 13.  

Second, the value alignment system can utilize a variation of so-called trolley problems for supervised 
machine learning. A trolley problem is a thought experiment about a fictional situation in which you can 
save the lives of five people who’ll otherwise be hit by a trolley by swerving and killing one person. 
Whether you choose to divert the trolley reveals your values. Variations of trolley problems change the 
number of people who die under each option and associate attributes with the people.18 They are also 
pairwise comparisons. Trolley problems are useful for value elicitation because humans are more easily 
able to reason about small numbers than the long decimals that usually appear in trust metrics. 
Moreover, couching judgements in terms of an actual scenario helps people internalize the 
consequences of the decision and relate them to their use case. 

As an example, consider the two scenarios shown in Figure 14.4. Which one do you prefer? Would 
you rather have an adversarial example fool the system or have a large disparate impact ratio? The 
actual numbers also play a role because a disparate impact ratio of 2 in scenario 2 is quite high. There is 
no right or wrong answer, but whatever you select indicates your values.  

 

 
17Moninder Singh, Gevorg Ghalachyan, Kush R. Varshney, and Reginald E. Bryant. “An Empirical Study of Accuracy, Fairness, 
Explainability, Distributional Robustness, and Adversarial Robustness.” In: KDD Workshop on Measures and Best Practices for Re-
sponsible AI. Aug. 2021.  
18Edmond Awad, Sohan Dsouza, Richard Kim, Jonathan Schulz, Joseph Henrich, Azim Shariff, Jean-François Bonnefon, and 
Iyad Rahwan. “The Moral Machine Experiment.” In: Nature 563.7729 (Oct. 2018), pp. 59–64.  
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Figure 14.4. A pairwise comparison of illustrated scenarios. Accessible caption. Two scenarios each have 
different small numbers of members of unprivileged and privileged groups receiving and not receiving 
the fellowship. The first scenario also has an adversarial example. 

14.3 Fusion of Preferences Over a Group 
Based on the previous section, you have several ways to tell the machine learning system your preferred 
values at different levels of granularity. As the problem owner, you have a lot of power. But should you 
wield that power unilaterally? Wouldn’t it better to include diverse voices and build consensus? Yes it 
would; it is important to take the preferences of other stakeholders such as the executive director, board 
members, and members of the Alma Meadow team into account. It is also critical that budding social 
entrepreneurs and the beneficiaries of their social impact startups participate in the value alignment 
process (they should be monetarily compensated for participating). The values communicated to the 
machine learning system should also take applicable laws and regulations into account; the law is 
another voice. 

Each of the individuals in an assembled panel can go through the same four-level value elicitation 
that you did in the previous section, yielding several CP-nets and sets of pairwise comparisons. But then 
what? How do you technically combine the individual preferences expressed by the different folks? 
Voting of some kind, also known as computational social choice, is a natural answer. Extensions of both CP-
nets and the analytic hierarchy process use voting-like mechanisms to fuse together several individual 
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preferences.19 Other methods for aggregating individual preferences into collective preferences are also 
based on voting.20 

Voting methods typically aim to choose the value that is preferred by the majority in every pairwise 
comparison with other possible values (this majority-preferred set of values is known as the Condorcet 
winner). However, it is not clear if such majoritarianism is really what you want when combining the 
preferences of the various stakeholders. Minority voices may raise important points that shouldn’t be 
drowned out by the majority, which is apt to happen in independent individual elicitation followed by a 
voting-based preference fusion. The degree of participation by members of minoritized groups should 
not be so weak as to be meaningless or even worse: extractive (the idea of extraction conceived in 
postcolonialialism is covered in Chapter 15).21 This shortcoming of voting systems suggests that an 
alternative process be pursued that does not reproduce existing power dynamics. Participatory design—
various stakeholders, data scientists and engineers working together in facilitated sessions to 
collectively come up with single CP-nets and pairwise comparisons—is a suggested remedy, but may in 
fact also reproduce existing power dynamics if not conducted well. So in your role at Alma Meadow, don’t 
skimp on well-trained facilitators for participatory design sessions. 

 

14.4 Governance 
You’ve come to an agreement with the stakeholders on the values that should be expressed in Alma 
Meadow’s application screening system. You’ve specified them as feasible ranges of quantitative 
metrics that the machine learning system can incorporate. Now how do you ensure that those desired 
values are realized by the deployed machine learning model? Through control or governance.22 Viewing 
the lifecycle as a control system, illustrated in Figure 14.5, the values coming out of value alignment are 
the reference input, the data scientists are the controllers that try to do all they can so the machine 
learning system meets the desired values, and model facts (described in Chapter 13 as part of 
transparency) are the measured output of testing that indicate whether the values are met. Any 
difference between the facts and the values is a signal of misalignment to the data scientists; they must 
do a better job in modeling. In this way, the governance of machine learning systems requires both the 
elicitation of the system’s desired behavior (value alignment) and the reporting of facts that measure 
those behaviors (transparency). 

 

 
19Lirong Xia, Vincent Conitzer, and Jérôme Lang. “Voting on Multiattribute Domains with Cyclic Preferential Dependencies.” 
In: Proceedings of the AAAI Conference on Artificial Intelligence. Chicago, Illinois, USA, Jul. 2008, pp. 202–207. Indrani Basak and 
Thomas Saaty. “Group Decision Making Using the Analytic Hierarchy Process.” In: Mathematical and Computer Modelling 17.4–5 
(Feb.–Mar. 1993), pp. 101–109. 
20Ritesh Noothigattu, Snehalkumar ‘Neil’ S. Gaikwad, Edmond Awad, Sohan Dsouza, Iyad Rahwan, Pradeep Ravikumar, and 
Ariel D. Procaccia. “A Voting-Based System for Ethical Decision Making.” In: Proceedings of the AAAI Conference on Artificial Intelli-
gence. New Orleans, Louisiana, USA, Feb. 2018, pp. 1587–1594. Min Kyung Lee, Daniel Kusbit, Anson Kahng, Ji Tae Kim, 
Xinran Yuan, Allissa Chan, Daniel See, Ritesh Noothigattu, Siheon Lee, Alexandros Psomas, and Ariel D. Procaccia. 
“WeBuildAI: Participatory Framework for Algorithmic Governance.” In: Proceedings of the ACM on Human-Computer Interaction 
3.181 (Nov. 2019). 
21Sasha Costanza-Chock. Design Justice: Community-Led Practices to Build the Worlds We Need. Cambridge, Massachusetts, USA: 
MIT Press, 2020.  
22Osonde A. Osoba, Benjamin Boudreaux, and Douglas Yeung. “Steps Towards Value-Aligned Systems.” In: Proceedings of the 
AAAI/ACM Conference on AI, Ethics, and Society. New York, New York, USA, Feb. 2020, pp. 332–336.  
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Figure 14.5. Transparent documentation and value alignment come together to help in the governance of ma-
chine learning systems. Accessible caption. A block diagram that starts with a value alignment block out 
of which come values. Facts are subtracted from values to yield misalignment. Misalignment is input 
to a data scientists block with modeling as output. Modeling is input to a machine learning model with 
output that is fed into a testing block. The output of testing is the same facts that were subtracted from 
values, creating a feedback loop. 

In Chapter 13, factsheets contained not only quantitative test results, but also intended uses and 
other qualitative knowledge about the development process. However, in the view of governance 
presented here, only the quantitative test results seem to be used. So, is governance concerned only with 
test outcomes, which are of a consequentialist nature, or is it also concerned with the development 
process, which is of a deontological nature? Since the controllers—the data scientists—are people with 
inherent quirks and biases, both kinds of facts together help them see the big picture goals without 
losing track of their lower-level, day-to-day duties for resolving misalignment. Thus, a codification of 
processes to be followed during development is an integral part of governance. Toward this end, you 
have instituted a set of checklists for Alma Meadow’s data scientists to follow, resulting in a well-
governed system overall. 

 

14.5 Summary 
▪ Interaction between people and machine learning systems is not only from the machine learning 

system to a human via explainability and transparency. The other direction from humans to the 
machine, known as value alignment, is just as critical so that people can instruct the machine on 
acceptable behaviors. 

▪ There are two kinds of values: consequentialist values that are concerned with outcomes and 
deontological values that are concerned with actions. Consequentialist values are more natural 
in value alignment for supervised machine learning systems. 

▪ Value alignment for supervised classification consists of four levels. Should you work on a 
problem? Which pillars of trustworthiness are high priority? What are the appropriate metrics? 
What are acceptable metric value ranges? 

▪ CP-nets and pairwise comparisons are tools for structuring the elicitation of preferences of 
values across the four levels.  

▪ The preferences of a group of stakeholders, including those from traditionally marginalized 
backgrounds, may be combined using either voting or participatory design sessions. 

▪ Governance of machine learning systems combines value alignment to elicit desired behaviors 
with factsheet-based transparency to measure whether those elicited behaviors are being met. 
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15  
Ethics Principles 

The fourth attribute of trustworthiness, introduced in Chapter 1, includes low self-orientation, 
motivation to serve others’ interests as well as own interests, benevolence, and an aligned purpose. This 
chapter focuses on this fourth attribute and kicks off the sixth and final part of the book (remember the 
organization of the book illustrated in Figure 15.1). Introduced in Chapter 14, value alignment is 
composed of two halves: technical and normative; this chapter deals with the normative part. Unlike 
earlier chapters, this chapter is not presented through a fictional use case.  
 

 
Figure 15.1. Organization of the book. The sixth part focuses on the fourth attribute of trustworthiness, purpose, 
which maps to the use of machine learning that is uplifting. Accessible caption. A flow diagram from left to 
right with six boxes: part 1: introduction and preliminaries; part 2: data; part 3: basic modeling; part 4: 
reliability; part 5: interaction; part 6: purpose. Part 6 is highlighted. Parts 3–4 are labeled as attributes 
of safety. Parts 3–6 are labeled as attributes of trustworthiness. 

Benevolence implies the application of machine learning for good purposes. From a 
consequentionalist perspective (defined in chapter 14), we should broadly be aiming for good outcomes 
for all people. But a single sociotechnical system surely cannot do that. So we must ask: whose good? 
Whose interests will machine learning serve? Who can machine learning empower to achieve their 
goals? 
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The values encoded into machine learning systems are an ultimate expression of power. The most 
powerful can push for their version of ‘good.’ However, for machine learning systems to be worthy of 
trust, the final values cannot only be those that serve the powerful, but must also include the values of 
the most vulnerable. Chapter 14 explains technical approaches for bringing diverse voices into the value 
alignment process; here we try to understand what those voices have to say.  

But before getting there, let’s take a step back and think again about the governance of machine 
learning as a control system. What do we have to do to make it selfless and empowering for all? As shown 
in Figure 15.2, which extends Figure 14.5, there is a paradigm—a normative theory of how things should 
be done—that yields principles out of which values arise. The values then influence modeling.  

 
Figure 15.2. A paradigm determines the principles by which values are constructed. The paradigm is one of the 
most effective points in the system to intervene to change its behavior. Accessible caption. A block diagram 
that starts with a paradigm block with output principles. Principles are input to a value alignment 
block with output values. Facts are subtracted from values to yield misalignment. Misalignment is in-
put to a data scientists block with modeling as output. Modeling is input to a machine learning model 
with output that is fed into a testing block. The output of testing is the same facts that were subtracted 
from values, creating a feedback loop. Paradigm is intervened upon, shown using a hammer. 

There are many leverage points in such a complex system to influence how it behaves.1 Twiddling with 
parameters in the machine learning model is a leverage point that may have some small effect. 
Computing facts quickly and bringing them back to data scientists is a leverage point that may have 
some slightly larger effect. But the most effective leverage point to intervene on is the paradigm 
producing the principles.2 Therefore, in this chapter, we focus on different paradigms and the 
principles, codes, and guidelines that come from them. 

 

15.1 Landscape of Principles 
Over the last several years, different groups from different sectors and different parts of the world have 
created ethics principles for machine learning (and artificial intelligence more broadly) that espouse 
their paradigms. Organizations from private industry, government, and civil society (the third sector 
that is neither industry nor government, and includes non-governmental organizations (NGOs)) have 
produced normative documents at similar rates. Importantly, however, organizations in more 

 

 
1Donella H. Meadows. Thinking in Systems: A Primer. White River Junction, Vermont, USA: Chelsea Green Publishing, 2008.  
2More philosophically, Meadows provides an even more effective leverage point: completely transcending the idea of para-
digms through enlightenment.  
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economically-developed countries have been more active than those in less economically-developed 
countries, which may exacerbate power imbalances. Moreover, the entire framing of ethics principles 
for machine learning is based on Western philosophy rather than alternative conceptions of ethics.3 
There are many similarities across the different sets of principles, but also key differences.4  

First, let’s look at the similarities. At a coarse-grained level, five principles commonly occur in ethics 
guidelines from different organizations:  

1. privacy, 

2. fairness and justice, 

3. safety and reliability, 

4. transparency (which usually includes interpretability and explainability), and 

5. social responsibility and beneficence. 

This list is not dissimilar to the attributes of trustworthiness that have guided the progression of the 
book. Some topics are routinely omitted from ethics principles, such as artificial general intelligence 
and existential threats (machines taking over the world), and the psychological impacts of machine 
learning systems. 

Differences manifest when looking across sectors: governments, NGOs, and private corporations. 
Compared to the private sector, governments and NGOs take a more participatory approach to coming 
up with their principles. They also have longer lists of ethical principles beyond the five core ones listed 
above. Furthermore, the documents espousing their principles contain greater depth.  

The topics of emphasis are different across the three sectors. Governments emphasize 
macroeconomic concerns of the adoption of machine learning, such as implications on employment and 
economic growth. NGOs emphasize possible misuse of machine learning. Private companies emphasize 
trust, transparency, and social responsibility. The remainder of the chapter drills down into these high-
level patterns. 

 

15.2 Governments 
What is the purpose of government? Some of the basics are law and order, defense of the country from 
external threats, and general welfare, which includes health, well-being, safety, and morality of the 
people. Countries often create national development plans that lay out actions toward improving general 
welfare. In 2015, the member countries of the United Nations ratified a set of 17 sustainable 
development goals to achieve by 2030 that harmonize a unified purpose for national development. 
These global goals are: 

1. end poverty in all its forms everywhere, 

 

 
3Abeba Birhane. “Algorithmic Injustice: A Relational Ethics Approach.” In: Patterns 2.2 (Feb. 2021), p. 100205. Ezinne 
Nwankwo and Belona Sonna. “Africa’s Social Contract with AI.” In: ACM XRDS Magazine 26.2 (Winter 2019), pp. 44–48. 
4Anna Jobin, Marcello Ienca, and Effy Vayena. “The Global Landscape of AI Ethics Guidelines.” In: Nature Machine Intelligence 1 
(Sep. 2019), pp. 389–399. Daniel Schiff, Jason Borenstein, Justin Biddle, and Kelly Laas. “AI Ethics in the Public, Private, and 
NGO Sectors: A Review of a Global Document Collection.” In IEEE Transactions on Technology and Society 2.1 (Mar. 2021), pp. 31–
42. 
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2. end hunger, achieve food security and improved nutrition and promote sustainable agriculture, 

3. ensure healthy lives and promote well-being for all at all ages, 

4. ensure inclusive and equitable quality education and promote lifelong learning opportunities 
for all, 

5. achieve gender equality and empower all women and girls, 

6. ensure availability and sustainable management of water and sanitation for all, 

7. ensure access to affordable, reliable, sustainable and modern energy for all, 

8. promote sustained, inclusive and sustainable economic growth, full and productive employ-
ment and decent work for all, 

9. build resilient infrastructure, promote inclusive and sustainable industrialization and foster 
innovation, 

10. reduce inequality within and among countries, 

11. make cities and human settlements inclusive, safe, resilient and sustainable, 

12. ensure sustainable consumption and production patterns, 

13. take urgent action to combat climate change and its impacts, 

14. conserve and sustainably use the oceans, seas and marine resources for sustainable develop-
ment, 

15. protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage for-
ests, combat desertification, and halt and reverse land degradation and halt biodiversity loss, 

16. promote peaceful and inclusive societies for sustainable development, provide access to justice 
for all and build effective, accountable and inclusive institutions at all levels, 

17. strengthen the means of implementation and revitalize the global partnership for sustainable 
development. 

Toward satisfying the purpose of government, governmental AI ethics principles are grounded in the 
kinds of concerns stated in the sustainable development goals. Fairness and justice are a part of many 
of the goals, including goals five, ten, and sixteen, and also appear as a core tenet of ethics principles. 
Several other goals relate to social responsibility and beneficence. 

Economic growth and productive employment are main aspects of goal eight and play a role in goals 
nine and twelve. Governments have an overriding fear that machine learning technologies will eliminate 
jobs through automation without creating others in their place. Therefore, as mentioned in the previous 
section, the economic direction is played up in governmental AI ethics guidelines and not so much in 
those of other sectors. 

“Our current trajectory automates work to an excessive degree while refusing to 
invest in human productivity; further advances will displace workers and fail to 
create new opportunities (and, in the process, miss out on AI’s full potential to 
enhance productivity).” 

—Daron Acemoglu, economist at Massachusetts Institute of Technology  
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As part of this goal, there are increasing calls for a paradigm shift towards AI systems that complement 
or augment human intelligence instead of imitating it.5 

Furthermore, towards both economic competitiveness and defense from external threats, some 
countries have now started engaging in a so-called arms race. Viewing the development of machine 
learning as a race may encourage taking shortcuts in safety and governance, which is cautioned against 
throughout this book.6 

 

15.3 Private Industry 
What is the purpose of a corporation? Throughout much of the last fifty years, the stated purpose of 
corporations (with some exceptions) has been to single-mindedly return profits to investors, also known 
as maximizing shareholder value. 

“There is one and only one social responsibility of business: to engage in activities 
designed to increase its profits.” 

—Milton Friedman, economist at the University of Chicago 

In 2019, however, the Business Roundtable, an association of the chief executives of 184 large 
companies headquartered in the United States, stated a broader purpose for corporations: 

1. Delivering value to our customers. We will further the tradition of American companies leading 
the way in meeting or exceeding customer expectations. 

2. Investing in our employees. This starts with compensating them fairly and providing important 
benefits. It also includes supporting them through training and education that help develop 
new skills for a rapidly changing world. We foster diversity and inclusion, dignity and respect. 

3. Dealing fairly and ethically with our suppliers. We are dedicated to serving as good partners to 
the other companies, large and small, that help us meet our missions. 

4. Supporting the communities in which we work. We respect the people in our communities and 
protect the environment by embracing sustainable practices across our businesses. 

5. Generating long-term value for shareholders, who provide the capital that allows companies to 
invest, grow and innovate. We are committed to transparency and effective engagement with 
shareholders. 

Shareholder value is listed only in the last item. Other items deal with fairness, transparency and 
sustainable development. AI ethics principles coming from corporations are congruent with this 
broadening purpose of the corporation itself, and are also focused on fairness, transparency and 
sustainable development.7 

 

 
5Daron Acemoglu, Michael I. Jordan, and E. Glen Weyl. “The Turing Test is Bad for Business.” In: Wired (Nov. 2021).  
6Stephen Cave and Seán S. ÓhÉigeartaigh. “An AI Race for Strategic Advantage: Rhetoric and Risks.” In: Proceedings of the 
AAAI/ACM Conference on AI, Ethics, and Society. New Orleans, Louisiana, USA, Feb. 2018, pp. 36–40. 
7In January 2022, the Business Roundtable came out with 10 AI ethics principles of their own: (1) innovate with and for diver-
sity, (2) mitigate the potential for unfair bias, (3) design for and implement transparency, explainability and interpretability, 
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“I think we're in the third era, which is the age of integrated impact where we have 
created social impact that is part of the core value and function of the company 
overall.” 

—Erin Reilly, chief social impact officer at Twilio 

The 2019 statement by the Business Roundtable is not without criticism. Some argue that it is simply 
a public relations effort without accompanying actions that could lead to a paradigm change. Others 
argue it is a way for chief executives to lessen their accountability to investors.8 AI ethics principles by 
corporations, especially those by companies developing machine learning technologies, face a similar 
criticism known as ethics washing—creating a façade of developing ethical or responsible machine 
learning that hides efforts that are actually very shallow.9 An extreme criticism is that technology 
companies actively mislead the world about their true purpose and intentions with machine learning.10 

 

15.4 Non-Governmental Organizations 
NGOs are not homogeneous, but their purpose is usually to advance the political or social goals of their 
members. The purpose of an individual NGO is captured in its theory of change, which could include 
promoting human rights, improving the welfare of vulnerable groups and individuals, or protecting the 
environment. As the third sector (civil society), NGOs serve as a watchdog and counterbalance to 
governments and corporations by taking on roles that neither of the two are able or willing to fulfill. By 
filling this niche, they lead the criticism of governments and private industry either implicitly or 
explicitly. Activists in NGOs often try to shift power to the unprivileged. 

Critical theory is the study of societal values with the purpose of revealing and challenging power 
structures; it is the foundation for several NGO theories of change. It includes subfields such as critical 
race theory, feminism, postcolonialism, and critical disability theory. Critical race theory challenges power 
structures related to race and ethnicity, with a particular focus on white supremacism and racism 
against blacks in the United States. Feminism is focused on power structures related to gender and 
challenging male supremacy. Postcolonialism challenges the legacy of (typically European) imperialism 
that continues to extract human and natural resources for the benefit of colonizers. Critical disability 
theory challenges ableism. The combinations of these different dimensions and others, known as 
intersectionality (first introduced in Chapter 10), are a key component of critical theory as well.  

 

 
(4) invest in a future-ready AI workforce, (5) evaluate and monitor model fitness and impact, (6) manage data collection and 
data use responsibly, (7) design and deploy secure AI systems, (8) encourage a company-wide culture of responsible AI, (9) 
adapt existing governance structures to account for AI, and (10) operationalize AI governance throughout the whole organiza-
tion.  
8Lucian A. Bebchuk and Roberto Tallarita. “The Illusory Promise of Stakeholder Governance.” In: Cornell Law Review 106 (2020), 
pp. 91–178.  
9Elettra Bietti. “From Ethics Washing to Ethics Bashing: A View on Tech Ethics from Within Moral Philosophy.” In: Proceedings 
of the ACM Conference on Fairness, Accountability, and Transparency. Barcelona, Spain, Jan. 2020, pp. 210–219. 
10Mohamed Abdalla and Moustafa Abdalla. “The Grey Hoodie Project: Big Tobacco, Big Tech, and the Threat on Academic In-
tegrity.” In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society. Jul. 2021, pp. 287–297. 
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From the perspective of critical theory, machine learning systems tend to be instruments that 
reinforce hegemony (power exerted by a dominant group).11 They extract data from vulnerable groups 
and at the same time, deliver harm to those same and other vulnerable groups. Therefore, the AI ethics 
principles coming from civil society often call for a disruption of the entrenched balance of power, 
particularly by centering the contexts of the most vulnerable and empowering them to pursue their 
goals.  

“A truly ethical stance on AI requires us to focus on augmentation, localized context 
and inclusion, three goals that are antithetical to the values justified by late-stage 
capitalism.” 

—danah boyd, president of Data & Society Research Institute  

As an example, the AI principles stated by an NGO that supports the giving of humanitarian relief to 
vulnerable populations are the following:12 

1. weigh the benefits versus the risks: avoid AI if possible, 

2. use AI systems that are contextually-based, 

3. empower and include local communities in AI initiatives, 

4. implement algorithmic auditing systems. 

 

15.5 From Principles to Practice 
The ethics principles from government, business, and civil society represent three different paradigms 
of normative values that may be encoded using the technical aspects of value alignment (described in 
Chapter 14) to specify the behavior of trustworthy machine learning systems. However, such 
specification will only happen when there is enough will, incentives, and devoted resources within an 
organization to make things happen. Intervening on the system’s paradigm is an effective starting point, 
but cannot be the only leverage point that is intervened upon. Putting principles into practice involves 
several other leverage points as well.  

The theory and methods for trustworthy machine learning start from algorithmic research. The 
incentives for typical machine learning researchers are centered on performance, generalization, 
efficiency, researcher understanding, novelty, and building on previous work.13 Since there is now a 

 

 
11Shakir Mohamed, Marie-Therese Png, and William Isaac. “Decolonial AI: Decolonial Theory as Sociotechnical Foresight in 
Artificial Intelligence” In: Philosophy & Technology 33 (Jul. 2020), pp. 659–684. Alex Hanna, Emily Denton, Andrew Smart, and 
Jamila Smith-Loud. “Towards a Critical Race Methodology in Algorithmic Fairness.” In: Proceedings of the ACM Conference on 
Fairness, Accountability, and Transparency. Barcelona, Spain, Jan. 2020, pp. 501–512. Emily M. Bender, Timnit Gebru, Angelina 
McMillan-Major, and Shmargaret Shmitchell. “On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? 🦜” In: 
Proceedings of the ACM Conference on Fairness, Accountability, and Transparency. Mar. 2021, pp. 610–623. 
12Jasmine Wright and Andrej Verity. “Artificial Intelligence Principles for Vulnerable Populations in Humanitarian Contexts.” 
Digital Humanitarian Network, Jan. 2020.  
13Abeba Birhane, Pratyusha Kalluri, Dallas Card, William Agnew, Ravit Dotan, Michelle Bao. “The Values Encoded in Machine 
Learning Research.” arXiv:2106.15590, 2021. 
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growing body of research literature on fairness, explainability, and robustness (they are ‘hot topics’), the 
incentives for researchers are starting to align with the pursuit of research in technical trustworthy 
machine learning algorithms. Several open-source and commercial software tools have also been 
created in recent years to make the algorithms from research labs accessible to data scientists. But 
having algorithmic tools is also only one leverage point for putting ethical AI principles into practice. 
Practitioners also need the knowhow for affecting change in their organizations and managing various 
stakeholders. One approach for achieving organizational change is a checklist of harms co-developed 
with stakeholders.14 Research is needed to further develop more playbooks for organization change. 

Putting principles to practice is a process that has its own lifecycle.15 The first step is a series of small 
efforts such as ad hoc risk assessments initiated by tempered radicals (people within the organization who 
believe in the change and continually take small steps toward achieving it). The second step uses the 
small efforts to demonstrate the importance of trustworthy machine learning and obtain the buy-in of 
executives to agree to ethics principles. The executives then invest in educating the entire organization 
on the principles and also start valuing the work of individuals who contribute to trustworthy machine 
learning practices in their organization. The impetus for executives may also come from external forces 
such as the news media, brand reputation, third-party audits, and regulations. The third step is the 
insertion of fact flow tooling (remember this was a way to automatically capture facts for transparency 
in Chapter 13) and fairness/robustness/explainability algorithms throughout the lifecycle of the 
common development infrastructure that the organization uses. The fourth step is instituting the 
requirement that diverse stakeholders be included in problem specification (value alignment) and 
evaluation of machine learning systems with veto power to modify or stop the deployment of the system. 
Simultaneously, this fourth step includes the budgeting of resources to pursue trustworthy machine 
learning in all model development throughout the organization. 
 

15.6 Summary 
▪ The purpose of trustworthy machine learning systems is to do good, but there is no single 

definition of good. 

▪ Different definitions are expressed in ethics principles from organizations across the 
government, private, and social sectors.  

▪ Common themes are privacy, fairness, reliability, transparency, and beneficence. 

▪ Governments emphasize the economic implications of the adoption of machine learning. 

▪ Companies stick primarily to the common themes. 

▪ NGOs emphasize the centering and empowerment of vulnerable groups. 

 

 
14Michael A. Madaio, Luke Stark, Jennifer Wortman Vaughan, and Hanna Wallach. “Co-Designing Checklists to Understand 
Organizational Challenges and Opportunities around Fairness in AI.” In: Proceedings of the CHI Conference on Human Factors in 
Computing Systems. Honolulu, Hawaii, USA, Apr. 2020, p. 318. 
15Bogdana Rakova, Jingying Yang, Henriette Cramer, and Rumman Chowdhury. “Where Responsible AI Meets Reality: Practi-
tioner Perspectives on Enablers for Shifting Organizational Practices.” In: Proceedings of the ACM on Human-Computer Interaction 
5.CSCW1 (Apr. 2021), p. 7. Kathy Baxter. “AI Ethics Maturity Model.” Sep. 2021.  
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▪ A series of small actions can push an organization to adopt AI ethics paradigms and principles. 
The adoption of principles is an effective start for an organization to adopt trustworthy machine 
learning as standard practice, but not the only intervention required. 

▪ Going from principles to practice also requires organization-wide education, tooling for 
trustworthy machine learning throughout the organization’s development lifecycle, budgeting of 
resources to put trustworthy machine learning checks and mitigations into all models, and veto 
power for diverse stakeholders at the problem specification and evaluation stages of the lifecycle. 
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16  
Lived Experience 

Recall Sospital, the leading (fictional) health insurance company in the United States that tried to 
transform its care management system in Chapter 10 with fairness as a top concern. Imagine that you 
are a project manager at Sospital charged with reducing the misuse of opioid pain medications by 
members. An opioid epidemic began in the United States in the late 1990s and is now at a point that over 
81,000 people die per year from opioid overdoses. As a first step, you analyze member data to 
understand the problem better. Existing machine learning-based opioid overdose risk models trained 
on data from state prescription drug monitoring programs (which may include attributes originating in 
law enforcement databases) have severe issues with data quality, consent, bias, interpretability, and 
transparency.1 Also, the existing risk models are predictive machine learning models that can easily 
pick up spurious correlations instead of causal models that do not. So you don’t want to take the shortcut 
of using the existing models. You want to start from scratch and develop a model that is trustworthy. 
Once you have such a model, you plan to deploy it to help human decision makers intervene in fair, 
responsible, and supportive ways. 

You are starting to put a team together to carry out the machine learning lifecycle for the opioid 
model. You have heard the refrain that diverse teams are better for business.2 For example, a 2015 study 
found that the top quartile of companies in gender and racial/ethnic diversity had 25% better financial 
performance than other companies.3 In experiments, diverse teams have focused more on facts and 
been more innovative.4 But do diverse teams create better, less biased, and more trustworthy machine 

 

 
1Maia Szalavitz. “The Pain Was Unbearable. So Why Did Doctors Turn Her Away?” In: Wired (Aug. 2021).  
2Among many other points that are used throughout this chapter, Fazelpour and De-Arteaga emphasize that the business case 
view on diversity is problematic because it takes the lack of diversity as a given and burdens people from marginalized groups 
to justify their presence. Sina Fazelpour and Maria De-Arteaga. “Diversity in Sociotechnical Machine Learning Systems.” 
arXiv:2107.09163, 2021.  
3The study was of companies in the Americas and the United Kingdom. Vivian Hunt, Dennis Layton, and Sara Prince. “Why 
Diversity Matters.” McKinsey & Company, Jan. 2015. 
4David Rock and Heidi Grant. “Why Diverse Teams are Smarter.” In: Harvard Business Review (Nov. 2016).  
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learning models?5 How and why? What kind of diversity are we talking about? In which roles and phases 
of the machine learning lifecycle is diversity a factor? 

“I believe diversity in my profession will lead to better technology and better benefits 
to humanity from it.” 

—Andrea Goldsmith, electrical engineer at Stanford University 

The first question is whether the team even affects the models that are created. Given the same data, 
won’t all skilled data scientists produce the same model and have the same inferences? A real-world 
experiment assigned 29 teams of skilled data scientists an open-ended causal inference task of 
determining whether soccer referees are biased against players with dark skin, all using exactly the 
same data.6 Due to different subjective choices the teams made in the problem specification and 
analysis, the results varied. Twenty teams found a significant bias against dark-skinned players, which 
means that nine teams did not. In another real-world example, 25 teams of data scientists developed 
mortality prediction models from exactly the same health data and had quite variable results, especially 
in terms of fairness with respect to race and gender.7 In open-ended lifecycles, models and results may 
depend a lot on the team.  

If the team matters, what are the characteristics of the team that matter? What should you be looking 
for as you construct a team for modeling individual patients’ risk of opioid misuse? Let’s focus on two 
team characteristics: (1) information elaboration: how do team members work together, and (2) cognitive: 
what do individual team members know. In the first characteristic: information elaboration, 
socioculturally non-homogeneous teams are more likely to slow down and consider critical and 
contentious issues; they are less apt to take shortcuts.8 Such a slowdown is not prevalent in 
homogeneous teams and importantly, does not depend on the team members having different sets of 
knowledge. All of the team members could know the critical issues, but still not consider them if the 
members are socioculturally homogeneous.  

You have probably noticed quotations sprinkled throughout the book that raise issues relevant to the 
topic of a given section. You may have also noticed that the people quoted have different sociocultural 
backgrounds, which may be different than yours. This is an intentional feature of the book. Even if they 
are not imparting knowledge that’s different from the main text of the book, the goal of the quotes is for 
you to hear these voices so that you are pushed to slow down and not take shortcuts. (Not taking 
shortcuts is a primary theme of the book.) 

 

 
5Caitlin Kuhlman, Latifa Jackson, and Rumi Chunara. “No Computation Without Representation: Avoiding Data and Algorithm 
Biases Through Diversity.” arXiv:2002.11836, 2020. 
6Raphael Silberzahn and Eric L. Uhlmann. “Crowdsourced Research: Many Hands Make Tight Work.” In: Nature 526 (Oct. 
2015), pp. 189–191. 
7Timothy Bergquist, Thomas Schaffter, Yao Yan, Thomas Yu, Justin Prosser, Jifan Gao, Guanhua Chen, Łukasz Charzewski, 
Zofia Nawalany, Ivan Brugere, Renata Retkute, Alidivinas Prusokas, Augustinas Prusokas, Yonghwa Choi, Sanghoon Lee, Jun-
seok Choe, Inggeol Lee, Sunkyu Kim, Jaewoo Kang, Patient Mortality Prediction DREAM Challenge Consortium, Sean D. 
Mooney, and Justin Guinney. “Evaluation of Crowdsourced Mortality Prediction Models as a Framework for Assessing AI in 
Medicine.” medRxiv:2021.01.18.21250072, 2021. 
8Daniel Steel, Sina Fazelpour, Bianca Crewe, and Kinley Gillette. “Information Elaboration and Epistemic Effects of Diversity.” 
In: Synthese 198.2 (Feb. 2021), pp. 1287–1307. 
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Sociocultural differences are associated with differences in lived experience of marginalization.9 
Remember from Chapter 1 that lived experience is the personal knowledge you have gained through 
direct involvement in things from which you have no option to escape. Related to the second 
characteristic of the team: what the team members know, one key cognitive theory relevant for 
trustworthy machine learning is that people with lived experience of marginalization have an epistemic 
advantage: when people reflect on their experience of being oppressed, they are better able to understand 
all sides of power structures and decision-making systems than people who have not been oppressed.10 
Briefly mentioned in Chapter 4, they have a bifurcated consciousness that allows them to walk in the 
shoes of both the oppressed and the powerful. In contrast, privileged people tend to have blind spots and 
can only see their own perspective.  

“People with marginalized characteristics—so people who had experienced 
discrimination—had a deeper understanding of the kinds of things that could happen 
to people negatively and the way the world works in a way that was a bit less rosy.” 

—Margaret Mitchell, research scientist at large 

“The lived experiences of those directly harmed by AI systems gives rise to 
knowledge and expertise that must be valued.” 

—Emily Denton, research scientist at Google 

“Technical know-how cannot substitute for contextual understanding and lived 
experiences.” 

—Meredith Whittaker, research scientist at New York University 

In modern Western science and engineering, knowledge derived from lived experience is typically 
seen as invalid; often, only knowledge obtained using the scientific method is seen as valid. This 
contrasts with critical theory, which has knowledge from the lived experience of marginalized people at 
its very foundation. Given the many ethics principles founded in critical theory covered in Chapter 15, 
it makes sense to consider lived experience in informing your development of a model for opioid misuse 
risk. Toward this end, in the remainder of the chapter, you will: 

▪ map the cognitive benefit of the lived experience of team members to the needs and 
requirements of different phases of the machine learning lifecycle, and 

▪ formulate lifecycle roles and architectures that take advantage of that mapping. 

 

 

 
9Neurodiversity is not touched upon in this chapter, but is another important dimension that could be expanded upon.  
10Natalie Alana Ashton and Robin McKenna. “Situating Feminist Epistemology.” In: Episteme 17.1 (Mar. 2020), pp. 28–47. 
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16.1 Lived Experience in Different Phases of the Lifecycle 
The first stage in the lifecycle of developing an opioid misuse risk model is problem specification and 
value alignment. In this phase, there is a clear need for the inclusion of people with different lived 
experiences to question assumptions and identify critical issues in the four levels of value alignment 
covered in Chapter 14: whether you should work on the problem, which pillars of trustworthiness are of 
concern, how to measure performance in those pillars, and acceptable ranges of metrics. The epistemic 
advantage of these team members is critical in this phase. The blind spots of team members who have 
not experienced systematic disadvantages will prevent them from noticing all the possible misuses and 
harms that can arise from the system, such as undue denials of care to traditionally marginalized 
individuals. This is the phase in which participatory design, also covered in Chapter 14, should be used.11 

“New perspectives ask new questions and that's a fact. This is exactly why inclusion 
matters!” 

—Deb Raji, fellow at Mozilla 

The second phase, data understanding, requires digging into the available data and its provenance 
to identify the possible bias and consent issues detailed in Chapter 4 and Chapter 5. This is another 
phase in which it is important for the team to be critical, and it is useful to have members with epistemic 
advantage. In Chapter 10, we already saw that the team developing the Sospital care management 
system needed to recognize the bias against African Americans when using health cost as a proxy for 
health need. Similarly, a diagnosis for opioid addiction in a patient’s data implies that the patient 
actually interacted with Sospital for treatment, which will also be biased against groups that are less 
likely to utilize the health care system. Problem owners, stakeholders, and data scientists from 
marginalized groups are more likely to recognize this issue. Furthermore, a variety of lived experiences 
will help discover that large dosage opioid prescriptions from veterinarians in a patient’s record are for 
their pets, not for them; prescription claims for naltrexone, an opioid itself, represent treatment for 
opioid addiction, not evidence of further misuse; and so on. 

The third phase in developing an opioid misuse model is data preparation. You can think of data 
preparation in two parts: (1) data integration and (2) feature engineering. Critique stemming from lived 
experience has little role to play in data integration because of its mechanical and rote nature. Is this 
also the case in the more creative feature engineering part? Remember from Chapter 10 that biases may 
be introduced in feature engineering, such as by adding together different health costs to create a single 
column. Such biases may be spotted by team members who are advantaged in looking for them. 
However, if dataset constraints, such as dataset fairness metric constraints, have already been included 
in the problem specification of the opioid misuse model in anticipation of possible harms, then no 
additional epistemic advantage is needed to spot the issues. Thus, there is less usefulness of lived 
experience of marginalization among team members in the data preparation stage of the lifecycle. 

 

 
11Vinodkumar Prabhakaran and Donald Martin Jr. “Participatory Machine Learning Using Community-Based System Dynam-
ics.” In: Health and Human Rights Journal 22.2 (Dec. 2020), pp. 71–74. 
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In the fourth phase of the lifecycle, the team will take the prepared data and develop an 
individualized causal model of factors that lead to opioid misuse.12 Coming after the problem 
specification phase that sets forth the modeling task and the performance metrics, and after the data 
understanding and data preparation phases that finalize the dataset, the modeling phase is not open-
ended like the soccer referee and mortality prediction tasks described in the previous section. The 
modeling is quite constrained from the perspective of the data scientist.  

A recent study tasked 399 data scientists, each working alone, with developing models of the 
mathematical literacy of people based on approximately five hundred of their biographical features; the 
dataset and basic performance metrics were clearly specified (no fairness metric was specified).13 
Importantly, the dataset had many data points and was purposefully and carefully collected as a 
representative sample without population biases. Thus, the dataset had negligible epistemic 
uncertainty. The study analyzed the 399 models that were created and found no significant relationship 
between the unwanted bias of the models and the sociocultural characteristics of the data scientists that 
produced them.  

In this example and other similar regimented and low-epistemic uncertainty modeling tasks, the 
lived experience of the team is seemingly of low importance. In contrast, when there is great epistemic 
uncertainty like you may have in analyzing opioid abuse, the inductive bias of the model chosen by the 
data scientist has a great role to play and the lived experience of the data scientist can become important. 
However, mirroring the argument made earlier about an explicit problem specification lessening the 
epistemic advantage for members of marginalized groups in feature engineering, a clear specification 
of all relevant trust metric dimensions also lessens the usefulness of lived experience in modeling. 

Evaluating the opioid risk model once it has been created is not as straightforward as simply testing 
it for the specified allowable trust metric ranges in the ways described in Chapter 14. Once a model is 
tangible, you can manipulate it in various ways and better imagine the harms it could lead to. Thus, 
being critical of the model during evaluation is also a job better done by a team that has members who 
have experienced systematic disadvantage and are attuned to the negative impacts it may have if it is 
deployed within Sospital’s operations.  

Finally, if the model has passed the evaluation stage, the ML operations engineers on the team carry 
out the deployment and monitoring phase of the lifecycle. Their role is primarily to ensure technical 
integration with Sospital’s other systems and noting when the trust metric ranges elicited during value 
alignment are violated over time. This is another phase of the lifecycle in which there is not much 
epistemic advantage to be had by a team containing engineers with lived experience of marginalization. 

Overall, as shown in Figure 16.1, three lifecycle phases (problem specification, data understanding, 
and evaluation) can take advantage of having a diverse team containing members that have lived 
experience of marginalization. The other three phases (data preparation, modeling, and deployment 
and monitoring) benefit less from the epistemic advantage of team members with lived experience of 

 

 
12Chirag Nagpal, Dennis Wei, Bhanukiran Vinzamuri, Monica Shekhar, Sara E. Berger, Subhro Das, and Kush R. Varshney. “In-
terpretable Subgroup Discovery in Treatment Effect Estimation with Application to Opioid Prescribing Guidelines.” In: Proceed-
ings of the ACM Conference on Health, Inference, and Learning. Apr. 2020, pp. 19–29.  
13Bo Cowgill, Fabrizio Dell’Acqua, Samuel Deng, Daniel Hsu, Nakul Verma, and Augustin Chaintreau. “Biased Programmers? 
Or Biased Data? A Field Experiment in Operationalizing AI Ethics.” In: Proceedings of the ACM Conference on Economics and Compu-
tation. Jul. 2020, pp. 679–681.  
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systematic harm. This conclusion suggests a particular lifecycle architecture for developing your opioid 
risk model, discussed in the next section. 

 
Figure 16.1. The different phases of the machine learning lifecycle delineated by how useful knowledge from lived 
experience is. Knowledge from lived experience is more useful in problem specification, data understanding, and 
evaluation. Knowledge from lived experience is less useful in data preparation, modeling, and deployment and 
monitoring. Accessible caption. A diagram of the development lifecycle is marked according to which 
phases find lived experience more useful and less useful. 

 

16.2 Inclusive Lifecycle Architectures 
From the previous section, you have learned that having a diverse team with lived experience of 
systematic harms is most important in the problem specification, data understanding, and evaluation 
phases. These phases coincide with the phases in which the problem owner and model validator 
personas are most prominent. Problem owners often tend to be subject matter experts about the 
application and are not usually skilled at the technical aspects of data engineering and modeling. They 
may or may not come from marginalized backgrounds. Given the power structures in place at many 
corporations, including Sospital, the problem owners often come from privileged backgrounds. Even if 
that is not true at Sospital, it is strongly suggested to have a panel of diverse voices, including those from 
marginalized groups, participate and be given a voice in these phases of the lifecycle. 

That leaves the other three phases. What about them? The analysis suggests that as long as the 
specification and validation are done with the inclusion of team members and panelists with lived 
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experience of oppression,14 then any competent, reliable, communicative, and selfless data engineers, 
data scientists, and ML operations engineers equipped with the tools and training in trustworthy 
machine learning will create a trustworthy opioid misuse risk model irrespective of their lived 
experience. The pool of skilled data scientists at Sospital does not include many individuals with lived 
experience, and you also don’t want to levy a ‘minority tax’—the burden of extra responsibilities placed 
on minority employees in the name of diversity—on the ones there are. So you go with the best folks 
available, and that is perfectly fine. (Machine learning researchers creating the tools for practitioners 
should have a variety of lived experiences because researchers have to both pose and answer the 
questions. Fortuitously, though their numbers are small overall, researchers from groups traditionally 
underrepresented in machine learning and associated with marginalization are seemingly 
overrepresented in research on trustworthy machine learning, as opposed to other areas of machine 
learning research.15) 

If the lived experience of the data scientists and engineers on the team is less relevant for building 
trustworthy machine learning systems, what if the data scientists and engineers are not living beings at 
all? Technology advances are leading to a near-future state in which feature engineering and modeling 
will be mostly automated, using so-called auto ML. Algorithms will construct derived features, select 
hypothesis classes, tune hyperparameters of machine learning algorithms, and so on. As long as these 
auto ML algorithms are themselves trustworthy,16 then it seems as though they will seamlessly enter the 
lifecycle, interact with problem owners and model validators, and successfully create a trustworthy 
model for opioid misuse. 

Shown in Figure 16.2, in this near-future, auto ML instead of data scientists is the controller in the 
control theory perspective on governance introduced in Chapter 14 and Chapter 15. And this is a-okay. 
Such an architecture involving auto ML empowers problem owners and marginalized communities to 
pursue their goals without having to rely on scarce and expensive data scientists. This architecture 
enables more democratized and accessible machine learning for Sospital problem owners when paired 
with low-code/no-code interfaces (visual software development environments that allow users to create 
applications with little or no knowledge of traditional computer programming). 

“It's about humans at the center, it's about those unnecessary barriers, where people 
have domain expertise but have difficulty teaching the machine about it.” 

—Christopher Re, computer scientist at Stanford University 

 

 
14Those specifications and validations must also be given true power. This point is discussed later using the terminology ‘par-
ticipation washing’. 
15Yu Tao and Kush R. Varshney. “Insiders and Outsiders in Research on Machine Learning and Society.” arXiv:2102.02279, 
2021.  
16Jaimie Drozdal, Justin Weisz, Dakuo Wang, Gaurav Dass, Bingsheng Yao, Changruo Zhao, Michael Muller, Lin Ju, and Hui Su. 
“Trust in AutoML: Exploring Information Needs for Establishing Trust in Automated Machine Learning Systems.” In: Proceed-
ings of the International Conference on Intelligent User Interfaces. Mar. 2020, pp. 297–307.  
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Figure 16.2. The control theory perspective of AI governance with auto ML technologies serving as the controller 
instead of data scientists. Accessible caption. A block diagram that starts with a paradigm block with out-
put principles. Principles are input to a value alignment block with output values. Facts are subtracted 
from values to yield misalignment. Misalignment is input to an auto ML block with modeling as output. 
Modeling is input to a machine learning model with output that is fed into a testing block. The output of 
testing is the same facts that were subtracted from values, creating a feedback loop.  

A recent survey of professionals working within the machine learning lifecycle asked respondents 
their preference for auto ML in different lifecycle phases.17 The respondents held different lifecycle 
personas. The preferred lifecycle phases for automation were precisely those in which lived experience 
is less important: data preparation, modeling, and deployment and monitoring. The phases of the 
lifecycle that respondents did not care to see automation take hold were the ones where lived experience 
is more important: problem specification, data understanding, and evaluation. Moreover, respondents 
from the problem owner persona desired the greatest amount of automation, probably because of the 
empowerment it provides them. These results lend further credence to an architecture for machine 
learning development that emphasizes inclusive human involvement in the ‘takeoff’ (problem 
specification and data understanding) and ‘landing’ (evaluation) phases of the lifecycle while permitting 
‘auto pilot’ (auto ML) in the ‘cruising’ (data preparation and modeling) phase.  

Another recent survey showed that machine learning experts were more likely to call for strong 
governance than machine learning non-experts.18 This result suggests that problem owners may not 
realize the need for explicit value alignment in an automated lifecycle. Therefore, the empowerment of 
problem owners should be only enabled in architectures that place the elicitation of paradigms and 
values at the forefront.  

“Participation-washing could be the next dangerous fad in machine learning.” 

—Mona Sloane, sociologist at New York University 

Before concluding the discussion on inclusive lifecycle architectures, it is important to bring up 
participation washing—uncredited and uncompensated work by members of marginalized groups.19 

 

 
17Dakuo Wang, Q. Vera Liao, Yunfeng Zhang, Udayan Khurana, Horst Samulowitz, Soya Park, Michael Muller, and Lisa Amini. 
“How Much Automation Does a Data Scientist Want?” arXiv:2101.03970, 2021. 
18Matthew O'Shaughnessy, Daniel Schiff, Lav R. Varshney, Christopher Rozell, and Mark Davenport. “What Governs Attitudes 
Toward Artificial Intelligence Adoption and Governance?” osf.io/pkeb8, 2021. 
19Mona Sloane, Emanuel Moss, Olaitan Awomolo, and Laura Forlano. “Participation is Not a Design Fix for Machine Learning.” 
arXiv:2007.02423, 2020. Bas Hofstra, Vivek V. Kulkarni, Sebastian Munoz-Najar Galvez, Bryan He, Dan Jurafsky, and Daniel A. 
McFarland. “The Diversity–Innovation Paradox in Science.” In: Proceedings of the National Academy of Sciences of the United States 
of America 117.17 (Apr. 2020), pp. 9284–9291. 
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Participatory design sessions that include diverse voices, especially those with lived experience of 
marginalization, have to be credited and compensated. The sessions are not enough if they turn out to 
be merely for show. The outcomes of those sessions have to be backed by power and upheld throughout 
the lifecycle of developing the opioid abuse model. Otherwise, the entire architecture falls apart and the 
need for team members with lived experience returns to all phases of the lifecycle. 

Leaving aside the difficult task of backing the inputs of marginalized people with the power they need 
to be given, how should you even go about bringing together a diverse panel? From a practical 
perspective, what if you are working under constraints?20 Broad advertising and solicitations from 
entities that vulnerable people don’t know may not yield many candidates. More targeted recruitment 
in specific social media groups and job listing sites may be somewhat better, but will still miss certain 
groups. Unfortunately, there are no real shortcuts. You have to develop relationships with institutions 
serving different communities and with members of those communities. Only then will you be able to 
recruit people to participate in the problem specification, data understanding, and evaluation phases 
(either as employees or simply as one-time panelists) and be able to do what you know that you should. 

 

16.3 Summary 
▪ The model produced in a machine learning lifecycle depends on characteristics of the team. 

▪ Teams that are socioculturally heterogeneous tend to slow down and not take shortcuts. 

▪ Team members with lived experience of marginalization have an epistemic advantage in 
noticing potential harms. 

▪ This epistemic advantage from lived experience is most important in the problem specification, 
data understanding, and evaluation stages of the lifecycle. It is less important in the data 
preparation, modeling, and deployment and monitoring stages. 

▪ A sensible architecture for the lifecycle focuses on inclusion of team members with lived 
experience of systematic harm in the three phases in which they have epistemic advantage. 

▪ The other three phases may be sensibly carried out by trustworthy data scientists and engineers, 
or even trustworthy auto ML algorithms, which may be empowering for problem owners. 

 

 

 
20Fernando Delgado, Stephen Yang, Michael Madaio, and Qian Yang. “Stakeholder Participation in AI: Beyond ‘Add Diverse 
Stakeholders and Stir.’” In: Proceedings of the NeurIPS Human-Centered AI Workshop. Dec. 2021.  
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17  
Social Good 

As you know from Chapter 7 and Chapter 13, the (fictional) information technology company JCN 
Corporation has several data science teams that work on different problems faced by the company and 
its customers. JCN Corporation’s chief executive is a member of the Business Roundtable and a 
signatory to broadening the values of private industry from being solely driven by shareholders to being 
driven by other stakeholders too (this was covered in Chapter 15). In this environment, you recall that 
the fourth attribute of trustworthiness includes beneficence and helping others. Toward this end, you 
have the idea to start a data science for social good program at JCN to engage those data science teams part-
time to conduct projects that directly contribute to uplifting humanity. 

“Imagine what the world would look like if we built products that weren't defined by 
what the market tells us is profitable, but instead what our hearts tell us is essential.” 

—Vilas Dhar, president of Patrick J. McGovern Foundation 

Taking a consequentialist view (remember consequentialism from Chapter 14), ‘social impact’ or 
‘making a difference’ is promoting the total wellbeing of humanity (in expected value over the long term 
without sacrificing anything that might be of comparable moral importance).1 But what does that really 
mean? And whose good or whose value of wellbeing are we talking about? 
  

 

 
1Benjamin Todd. “What Is Social Impact? A Definition.” URL: https://80000hours.org/articles/what-is-social-impact-definition, 
Nov. 2021.  
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“The phrase ‘data science for social good’ is a broad umbrella, ambiguously defined. 
As many others have pointed out, the term often fails to specify good for whom.” 

—Rachel Thomas, data scientist at Queensland University of Technology 

It is dangerous for you to think that you or the data science teams at JCN Corporation are in position 
to determine what is an appropriate problem specification to uplift the most vulnerable people in the 
world. Data science for social good is littered with examples of technologists taking the shortcut of being 
paternalistic and making that determination themselves. If your data science teams are diverse and 
include people with lived experience of marginalization (see Chapter 16), then maybe they will be less 
paternalistic and push to have diverse, external problem owners.  

“Most technologists from the Global North are often not self-aware and thus look at 
problems in the Global South through the lens of technology alone. In doing so, they 
inevitably silence the plurality of perspectives.”  

—Patrick Meier, co-CEO of WeRobotics  

But who should those external problem owners be? Your first inclination is to look towards 
international development experts from large well-established governmental and non-governmental 
organizations, and consulting the seventeen UN Sustainable Development Goals (SDGs) listed in Chapter 
15. But as you investigate further, you realize that there were a lot of struggles of power and politics that 
went into determining the SDGs; in particular, the lower-level targets beneath the seventeen goals may 
not represent the views of the most vulnerable.2 You also learn that international development overall 
has many paternalistic tendencies and is also littered with projects that make no sense. Some may even 
be harmful to the people they intend to uplift. 

“Find algorithms that benefit people on their own terms.” 

—Jacob Metcalf, technology ethicist at Data & Society Research Institute 

Thus, while taking inspiration from the high-level topics touched on by the SDGs, you decide on the 
following theory of change for the JCN data science for social good program you are creating. Using 
machine learning, you will empower smaller, innovative social change organizations that explicitly 
include the knowledge of the vulnerable people they intend to uplift when they work towards social 
impact. (Collectively, civil society organizations and social enterprises—for-profit businesses that have 
social impact as their main goal—are known as social change organizations.) Toward developing a social 
good program within JCN Corporation, in this chapter you will: 

▪ evaluate past data science for social good projects, 

 

 
2Serge Kapto. “Layers of Politics and Power Struggles in the SDG Indicator Process.” In: Global Policy 10.S1 (Jan. 2019), pp. 134–
136. 
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▪ formulate a lifecycle for achieving a successful data science for social good program, and  

▪ sketch out empowering machine learning architectures and platforms for promoting social good. 

Before jumping into it, a few words on how you can gain internal support within JCN Corporation to 
devote resources to the program. There are several value propositions that go beyond appealing to the 
broadening stakeholder values that JCN Corporation is adopting and beyond appealing to the potential 
for positive public relations. First, machine learning problem specifications in social impact 
applications tend to have different constraints than those found in information technology and 
enterprise applications. Constraints are the mother of innovation, and so working on these problems 
will lead to new innovations for JCN. Second, by partnering with civil society organizations, JCN 
Corporation will receive valuable feedback and public references about its machine learning tools that 
enterprise customers may be unwilling to provide. Public references that allow JCN to tout its 
capabilities are distinct from positive public relations because they do not depend on the goodness of 
the application. Third, working on these projects attracts, retains, and grows the skills of talented data 
scientists in JCN Corporation. Fourth, if the program is run on JCN Corporation’s cloud computing 
platform, the platform’s usage will grow. Tax deductions for charitable giving are conspicuously absent 
from the value propositions because JCN Corporation will be receiving product feedback and possible 
cloud usage from the social change organizations. 

 

17.1 Evaluating Data Science for Social Good 
Throughout the book, you have taken on roles in several (fictional) social change organizations, 
including as a project manager with m-Udhār Solar (the provider of pay-as-you-go solar energy), as a 
data scientist with Unconditionally (the distributor of unconditional cash transfers), as a data scientist 
collaborator of ABC Center (the integrated social services provider), and as a problem owner with Alma 
Meadow (the granter of two-year fellowships to budding social entrepreneurs). Moreover, although the 
(fictional) Bank of Bulandshahr and Wavetel were launching the Phulo mobile telephony-based lending 
service with for-profit motives, the service is a vehicle for financial inclusion and upliftment. Thus, you 
have already seen some examples of projects that fall under the data science for social good umbrella. 
Their non-fictionalized counterparts were conducted as partnerships between social change 
organizations and data scientists acting in a ‘for social good’ capacity.3  

 

 
3Hugo Gerard, Kamalesh Rao, Mark Simithraaratchy, Kush R. Varshney, Kunal Kabra, and G. Paul Needham. “Predictive Mod-
eling of Customer Repayment for Sustainable Pay-As-You-Go Solar Power in Rural India.” In: Proceedings of the Data for Good 
Exchange Conference. New York, New York, USA. Sep. 2015. Brian Abelson, Kush R. Varshney, and Joy Sun. “Targeting Direct 
Cash Transfers to the Extremely Poor.” In: Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New 
York, New York, USA, Aug. 2014, pp. 1563–1572. Debarun Bhattacharjya, Karthikeyan Shanmugam, Tian Gao, Nicholas Mattei, 
Kush R. Varshney, and Dharmashankar Subramanian. “Event-Driven Continuous Time Bayesian Networks.” In: Proceedings of 
the AAAI Conference on Artificial Intelligence. New York, New York, USA, Feb. 2020, pp. 3259–3266. Aditya Garg, Alexandra Ol-
teanu, Richard B. Segal, Dmitriy A. Katz-Rogozhnikov, Keerthana Kumar, Joana Maria, Liza Mueller, Ben Beers, and Kush R. 
Varshney. “Demystifying Social Entrepreneurship: An NLP Based Approach to Finding a Social Good Fellow.” In: Proceedings of 
the Data Science for Social Good Conference. Chicago, Illinois, USA, Sep. 2017. Skyler Speakman, Srihari Sridharan, and Isaac 
Markus. “Three Population Covariate Shift for Mobile Phone-based Credit Scoring.” In: Proceedings of the ACM SIGCAS Conference 
on Computing and Sustainable Societies. Menlo Park, California, USA, Jun. 2018, p. 20. 
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17.1.1 What is Data Science for Social Good? 
By happenstance, the examples in the book cover a narrow swath of possible uses of machine learning 
and artificial intelligence in social good. Moreover, due to the scope of the book, all but the ABC Center 
use case are focused on classification problems that lead to the allocation of something that, at face 
value, appears to be favorable to the recipient. The ABC Center example is focused on causal inference 
and causal discovery. Surveys of the data science for social good landscape find projects touching the 
following categories , which have a great deal of alignment with the SDGs:4 

▪ accessibility, 

▪ agriculture, 

▪ education, 

▪ environment, 

▪ financial inclusion, 

▪ health care, 

▪ infrastructure (e.g. urban planning and transportation), 

▪ information verification and validation, 

▪ public safety and justice, and 

▪ social work, 

and touching the following technical approaches from artificial intelligence: 

▪ supervised learning, 

▪ reinforcement learning, 

▪ computer vision, 

▪ natural language processing, 

▪ robotics, 

▪ knowledge representation and reasoning, 

▪ planning and scheduling, 

▪ constraint satisfaction, 

and many others.  
Both lists are extremely vast and encompassing. As such, you should not think of social good as an 

application area of machine learning and AI, but as a paradigm or value system (paradigms are 
discussed in Chapter 15 as the precursor to values). Do not simply train a model on some dataset you 
downloaded that relates to agriculture or infrastructure or misinformation; that is not data science for 
social good. Do not create a system that helps privileged individuals discover which farmers markets 

 

 
4Michael Chui, Martin Harryson, James Manyika, Roger Roberts, Rita Chung, Ashley van Heteren, and Pieter Nel. “Notes from 
the AI Frontier: Applying AI for Social Good.” McKinsey & Company, Dec. 2018. Zheyuan Ryan Shi, Claire Wang, and Fei Fang. 
“Artificial Intelligence for Social Good: A Survey.” arXiv:2001.01818, 2020. 
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currently have an inventory of kale; that is not data science for social good.5 Data science for social good 
requires social change organizations to be problem owners who state the problem specification based 
on the lived experiences of their beneficiaries (and even better, bring their beneficiaries to a panel of 
diverse voices to inform the project). 

Needless to say, the data science for social good you do in your program at JCN Corporation must be 
imbued with data privacy and consent, along with the first three attributes of trustworthy machine 
learning: competence, reliability (including fairness and robustness), and interaction (including 
explainability, transparency, and value alignment). This is especially the case because these systems 
are affecting the most vulnerable members of society. 

17.1.2 How Has Data Science for Social Good Been Conducted? 
Surveys of the data science for social good landscape find that nearly all efforts have been conducted as 
one-off projects that involve the development of a custom-tailored solution, irrespective of whether they 
are carried out as data science competitions, weekend volunteer events, longer term volunteer-based 
consulting engagements, student fellowship programs, corporate philanthropy, specialized non-
governmental organizations, or dedicated innovation teams of social change organizations.  

Creating such one-off solutions requires a great deal of time and effort both from the social change 
organization and the data scientists. There is limited reuse of assets and learnings from one project to 
the next because (1) every new project involves a different social change organization and (2) data 
scientists acting as volunteers are unable to conduct a sequence of several projects over time. Moreover, 
these projects typically require the social change organization to integrate machine learning solutions 
with their other systems and practices, to deploy those solutions, and monitor and maintain the 
solutions over time themselves. Very few social change organizations are equipped to do such ‘last-mile’ 
implementation, partly because their funding typically does not allow them to invest time and resources 
into building up technological capacity. 

The confluence of all these factors has led to the state we are in: despite the data science for social 
good movement being nearly a decade long, most projects continue to only be demonstrations without 
meaningful and lasting impact on social change organizations and their constituents.6 A project lasting 
a few months may show initial promise, but then is not put into practice and does not ‘make a difference.’  

 

17.2 A Lifecycle of a Data Science for Social Good Program 
As you envision the JCN Corporation data science for social good program, you want to avoid the pitfalls 
that others have experienced in the past. But can your program jump right to the end goal of doing high-
impact work, or is there an evolution it must go through? Sorry, there are no shortcuts. Just like an 
artist’s or scientist’s hot-streak of high-impact work begins with an exploration7 phase that touches a 

 

 
5Jake Porway. “You Can’t Just Hack Your Way to Social Change.” In: Harvard Business Review (Mar. 2013). URL: 
https://hbr.org/2013/03/you-cant-just-hack-your-way-to.  
6Kush R. Varshney and Aleksandra Mojsilović. “Open Platforms for Artificial Intelligence for Social Good: Common Patterns as 
a Pathway to True Impact.” In: Proceedings of the ICML AI for Social Good Workshop. Long Beach, California, USA, Jul. 2019. 
7Lu Liu, Nima Dehmamy, Jillian Chown, C. Lee Giles, and Dashun Wang. “Understanding the Onset of Hot Streaks Across Artis-
tic, Cultural, and Scientific Careers.” In: Nature Communications 12 (Sep. 2021), p. 5392. 
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diversity of topics (which is then followed by a narrowly-focused exploitation phase that produces the 
impact),8 a data science for social good program needs to begin broadly and go through the following 
three-step lifecycle, illustrated in Figure 17.1. 

 
Figure 17.1. Illustration of the three phases of the lifecycle of a data science for social good program: (1) piloting 
and innovating with a portfolio of projects, (2) reusing and hardening solutions to the common patterns, and (3) 
creating a usable platform that can reach a lot of social change organizations. Accessible caption. Step 1, pilot 
and innovate, shows several different development lifecycles with icons for different social good appli-
cations in their center, colored gray to indicate they are not yet hardened. Step 2, reuse and harden, 
shows a sequence of three development lifecycles in which the social good application icon gets pro-
gressively darker to black to indicate hardening. Step 3, deliver at scale shows a development lifecycle 
inside a computer window illustrating its incorporation into a platform, touching tens of social good 
applications.  

1. Pilot and innovate. You should conduct several individual projects to learn about the needs of so-
cial change organizations that may be addressed by machine learning. In this phase, your data 
scientists will also gain the experience of conducting multiple projects and start seeing com-
monalities across them. While doing so, JCN Corporation will gain from new innovations under 
new constraints. You can choose to be somewhat intentional in the application area of social 
good to match corporate values or in the technical area of machine learning to match technical 
areas of interest, but not overly so. 

2. Reuse and harden. Once you have several projects under your belt, you must step back and ana-
lyze the common patterns that emerge. Your goal at this stage is to develop common algorithms 
or algorithmic toolkits to address those common patterns in as reusable a way as possible. You 
want to meet the needs of multiple social change organizations using a common model or algo-
rithm. This type of machine learning innovation is unique; most data scientists and machine 
learning researchers are not trained to step back and abstract things in this way, so it will be a 

 

 
8The word ‘exploit’ is used in a positive sense here, but is used in a negative sense later in the chapter. 
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challenge. However, this sort of insight and innovation is precisely the feedback that will be 
helpful for JCN Corporation’s teams developing software tools and products for conducting data 
science. 

3. Deliver at scale. Those common reusable algorithms will not make high impact until they are 
made available within an environment that low-resourced and low-skilled social change organ-
izations can be empowered to tweak, use, and maintain. (Refer to inclusive low-code/no-code 
architectures in Chapter 16 for a related discussion.) The delivery will likely be ‘as-a-service’ on 
JCN Corporation’s cloud-based environment. Software-as-a-service is software that is licensed 
as a subscription, is centrally hosted, and is accessed by users using a web browser. Therefore, 
integration with other systems is greatly simplified and the responsibility for maintenance falls 
on JCN Corporation rather than the social change organization. 

You are probably comfortable with the first phase of this data science for social good program 
lifecycle. As long as you ensure that social change organizations—representing the interests of their 
beneficiaries who have lived experience of vulnerability—are the problem owners and involved in 
evaluation, then the JCN Corporation data scientists can approach the portfolio of projects in this phase 
in a manner they are used to.  

The second phase presupposes that there are common patterns in social good projects that can be 
addressed using common models or algorithms. Evidence is starting to mount that this is indeed the 
case. For example, the same algorithm for bandit data-driven optimization is used in social good 
applications as varied as feeding the hungry and stopping wildlife poachers.9 As a second example, most 
of the social good use cases (fictionally) covered in the book are quite different from each other, but are 
all fair allocation problems posed as binary classification that can be addressed using a common 
algorithmic toolkit such as AI Fairness 360, a library of fairness metrics and bias mitigation 
algorithms.10 Moreover, large language models have been fine-tuned for several disparate social good 
domains such as collecting evidence for drug repurposing and simplifying text for people with low-
literacy or cognitive disability.11 (Large language models are a kind of foundation model; introduced in 
Chapter 4, foundation models are machine learning models trained on large-scale data that can be fine-
tuned for specific problems.) 

The third phase of the lifecycle of a social good program is mostly unproven as yet, but is what you 
should be working toward in the program you intend to start at JCN Corporation. The result is an 
accessible and inclusive data science for social good platform that is described in the next section.  

 

 
9Zheyuan Ryan Shi, Zhiwei Steven Wu, Rayid Ghani, and Fei Fang. “Bandit Data-Driven Optimization: AI for Social Good and 
Beyond.” arXiv:2008.11707, 2020. 
10Rachel K. E. Bellamy, Kuntal Dey, Michael Hind, Samuel C. Hoffman, Stephanie Houde, Kalapriya Kannan, Pranay Lohia, 
Jacquelyn Martino, Sameep Mehta, Aleksandra Mojsilovic, Seema Nagar, Karthikeyan Natesan Ramamurthy, John Richards, 
Diptikalyan Saha, Prasanna Sattigeri, Moninder Singh, Kush R. Varshney, and Yunfeng Zhang. “AI Fairness 360: An Extensible 
Toolkit for Detecting and Mitigating Algorithmic Bias.” In: IBM Journal of Research and Development 63.4/5 (Jul./Sep. 2019), p. 4. 
11Shivashankar Subramanian, Ioana Baldini, Sushma Ravichandran, Dmitriy A. Katz-Rogozhnikov, Karthikeyan Natesan 
Ramamurthy, Prasanna Sattigeri, Kush R. Varshney, Annmarie Wang, Pradeep Mangalath, and Laura B. Kleiman. “A Natural 
Language Processing System for Extracting Evidence of Drug Repurposing from Scientific Publications.” In: Proceedings of the 
AAAI Conference on Artificial Intelligence. New York, New York, USA, Feb. 2020, pp. 13369–13381. Sanja Stajner. “Automatic Text 
Simplification for Social Good: Progress and Challenges.” In: Findings of the Association for Computational Linguistics. Aug. 2021, 
pp. 2637–2652. 
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Before getting there, two comments on the term ‘scale.’ Scaling is a paradigm seen as paramount in 
much of the technology industry, and is the main reason to pursue a digital platform that can be built 
once and used by many. However, scaling is not the mission of many social change organizations; 
although some would like to grow, many would like to remain small with a very pointed mission.12 
Moreover, scaling as an overriding paradigm is not free from criticism and can be seen as a means for 
exploiting the most vulnerable.13 In creating a social good program and platform with JCN Corporation, 
your goal is to make the work of all social change organizations easier, irrespective of whether they 
would like to scale themselves. You can control any possible exploitation by centering the values of the 
most vulnerable throughout the development lifecycle. 

 

17.3 A Data Science for Social Good Platform 
A foundation model, algorithm, or algorithmic toolkit that applies broadly to the problems faced by many 
social change organizations is an excellent start, but it is not enough to satisfy your theory of change. 
These technological artifacts alone do not empower social change organizations because they require a 
level of skill and infrastructure in data science and engineering that the organizations typically lack. 
Incongruously, social change organizations are typically low-resourced just like the people they serve, 
especially in comparison to private corporations embracing machine learning with large data science 
teams. You can say that social change organizations are at the ‘bottom of the pyramid’ among 
organizations. (In its typical usage, the term ‘bottom of the pyramid’ refers to the socioeconomically 
poorest or least wealthy group of people.) 

A washing machine, stove, or ultrasound imaging machine designed for a wealthy, high-resourced 
context will not cut it in a low-resourced context. The core technology has to be put into a form factor 
that makes sense for bottom-of-the-pyramid users. The same is true of machine learning for social 
change organizations. In general, bottom-of-the-pyramid innovation has the following twelve 
principles:14 

1. focus on (quantum jumps in) price performance; 

2. hybrid solutions, blending old and new technology; 

3. scalable and transportable operations across countries, cultures and languages; 

4. reduced resource intensity: eco-friendly products; 

5. identify appropriate functionality; 

6. build logistical and manufacturing infrastructure; 

7. deskill (services) work; 

8. educate (semiliterate) customers in product usage; 

 

 
12Anne-Marie Slaughter. “Thinking Big for Social Enterprise Can Mean Staying Small.” In: Financial Times (Apr. 2018). URL: 
https://www.ft.com/content/86061a82-46ce-11e8-8c77-ff51caedcde6. 
13Katherine Ye. “Silicon Valley and the English Language.” URL: https://book.affecting-technologies.org/silicon-valley-and-the-
english-language/. Jul. 2020.  
14C. K. Prahalad. The Fortune at the Bottom of the Pyramid: Eradicating Poverty Through Profits. Upper Saddle River, New Jersey, 
USA: Wharton School Publishing, 2005.  
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9. products must work in hostile environments; 

10. adaptable user interface to heterogeneous consumer bases; 

11. distribution methods designed to reach both highly dispersed rural markets and highly dense 
urban markets; and 

12. focus on broad architecture, enabling quick and easy incorporation of new features. 

What are the important points among these principles for a machine learning platform that empowers 
social change organizations and what is a platform anyway?  

A digital platform is a collection of people, processes, and internet-based tools that enable users to 
develop and run something of value. Therefore, a machine learning platform contains web-based 
software tools to carry out the entire machine learning development lifecycle from the problem 
specification phase all the way to the deployment and monitoring phase, with roles for all the personas 
including problem owners, data scientists, data engineers, model validators, operations engineers, and 
diverse voices. Importantly, a machine learning platform is more than simply an off-the-shelf 
programming library for modeling.  

In fact, there are three kinds of machine learning capabilities: (1) off-the-shelf machine learning 
packages, (2) machine learning platforms, and (3) bespoke machine learning builds.15 At one extreme, 
off-the-shelf packages are useful for top-of-the-pyramid organizations with a high level of data science 
skill and a high level of resources, but not for bottom-of-the-pyramid social change organizations. At the 
other extreme, bespoke or custom-tailored development (which has been the predominant mode of data 
science for social good over the last decade) should only be used for extremely complex problems or 
when an organization needs a technological competitive advantage. These are not the circumstances in 
which social change organizations typically operate; usually their problems, although having unique 
constraints, are not overly complicated from a machine learning perspective and usually their 
advantages in serving their beneficiaries are non-technological. Thus, it makes sense to be just right and 
serve social change organizations using machine learning platforms. 

What does a machine learning platform for the bottom of the pyramid entail? Translating the twelve 
general principles to a machine learning platform for social change implies a focus on appropriate 
functionality, adaptable user interfaces, deskilling, broad architecture, distribution methods, and 
education. You’ll obtain appropriate functionality by paring down the machine learning capabilities to 
the core model, algorithm, or toolkit that is reusable by many different social change organizations with 
similar needs, as discussed earlier. Such foundational capabilities mean that the algorithms have to be 
created only once and can be improved by a dedicated machine learning team that is not reliant on, or 
part of, any one social change organization.  

The remaining aspects touch on the last-mile problem. You can achieve adaptable user interfaces 
and deskilling by following the inclusive architecture presented in Chapter 16 for people with lived 
experience of marginalization. Such an architecture takes the scarce and expensive skill of data 
scientists out of the development lifecycle through low-code/no-code and auto ML. Low-code/no-code 
and auto ML should make it easy to configure and fine-tune the machine learning capability for the 

 

 
15Andrew Burgess. The Executive Guide to Artificial Intelligence: How to Identify and Implement Applications for AI in Your Organization. 
London, England, UK: Palgrave Macmillan, 2017. 
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specific task being approached by the social change organization. It should also be easy to slightly 
change the definition of an outcome variable and apply the model to a new setting with slightly different 
features. The interface should also provide a data catalog and tools for managing data. Moreover, the 
interface should include meaningful and easy to consume visualizations of the output predictions. The 
focus should be to simplify, simplify, simplify, but not so much that you are left with something 
meaningless. 

A web and cloud-based platform is specifically designed to support quick and easy incorporation of 
new capabilities. Any improvements to the machine learning diffuse to social change organizations 
automatically. Similarly, cloud-based platforms are designed in a way that allow broad distribution to 
any device anywhere there is an internet connection. This method of delivery is starting to lead to 
turnkey deployment and monitoring of machine learning systems.  

Finally, the last component of a machine learning platform for social impact is education: teaching 
and reference materials, tutorials, how-to guides, examples, etc. presented in the language of social 
change organizations. It must be presented in a way that people starting at different skill levels all have 
an on-ramp to the content. An important part of the education for members of social change 
organizations is sparking the imagination of what’s possible using machine learning in the social impact 
sector. A persona that has not come up in the book so far, a broker who bridges the gap between members 
of social change organizations and the data science world by translating and aligning the concepts used 
in each field, is very useful in the education component of the platform.16  

Have you noticed something? All of the desirable attributes of a machine learning platform seem to 
be desirable not only for empowering social change organizations, but also desirable for any 
organization, including ones at the top of the pyramid. And that is the beauty of bottom-of-the-pyramid 
innovation: it is good old innovation that is useful for everyone including JCN Corporation’s enterprise 
customers.  

Beyond the design and the ease of use of the platform, a critical aspect for you to sustainably bring 
the platform and overall data science for social good program to fruition is winning the support of large 
grantmaking foundations that fund social change organizations. First, the foundations must give some 
sort of implicit permission to social change organizations to use the platform and provide them enough 
leeway in their budgets to get started. Second, in a similar vein as international development projects 
specified without the perspective of vulnerable people, there are many international development 
efforts whose funding did not provision for maintenance and long-term support beyond the initial 
headline. JCN Corporation will not be able to sustain a data science for social good platform you create 
without grants for its maintenance, so you’ll need to line up funding. Foundations are beginning to see 
the need to support technology efforts among their grantees,17 but are not yet ready to fund a platform 
operated by a private corporation. 

You have your work cut out for you to launch a data science for social good program at JCN 
Corporation and push it along the lifecycle beyond just the initial set of projects to common algorithms 

 

 
16Youyang Hou and Dakuo Wang. “Hacking with NPOs: Collaborative Analytics and Broker Roles in Civic Data Hackathons.” In: 
Proceedings of the ACM on Human-Computer Interaction 1.CSCW (Nov. 2017), p. 53. 
17Michael Etzel and Hilary Pennington. “Time to Reboot Grantmaking.” In: Stanford Social Innovation Review. URL: 
https://ssir.org/articles/entry/time_to_reboot_grantmaking, Jun. 2017.  
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and then a scalable platform. But with enough conviction, wherewithal, and luck, you just might be able 
to pull it off. Go forth, you genuine do-gooder!18 

 

17.4 Summary 
▪ Data science for social good—using machine learning in a beneficent way—is not an application 

area for machine learning, but a paradigm and value system. 

▪ The goal is to empower social change organizations in the development of machine learning 
systems that help uplift vulnerable people on their own terms. 

▪ The decade-long experience with data science for social good has rarely yielded truly impactful 
results because individual projects fail to overcome the last-mile problem. 

▪ Social change organizations are typically low-resourced and need much more than just code or 
a custom solution to be able to use machine learning in their operations. 

▪ Machine learning platforms that are specifically designed to deskill data science needs and 
minimize the effort for deployment, maintenance, and support are the solution. Such platforms 
should be built around common algorithmic patterns in the social impact space that you start 
seeing by conducting several projects over a lifecycle. 

▪ All the attributes of trustworthy machine learning are essential in applying machine learning for 
social impact, including fairness, robustness, explainability, and transparency. 

 

 

 
18William D. Coplin. How You Can Help: An Easy Guide to Doing Good Deeds in Your Everyday Life. New York, New York, USA: 
Routledge, 2000.  
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18  
Filter Bubbles and Disinformation 

Imagine that you’re a technology executive who is unhappy with the stranglehold that a handful of 
companies have on how people receive information via ad-supported social media timelines, 
recommendations, and search engines. Your main issue with these ‘big tech’ companies is the filter 
bubbles, disinformation, and hate speech festering on their platforms that threaten a functioning non-
violent society.  Many of these phenomena result from machine learning systems that help the platforms 
maximize engagement and revenue. Economists call these considerations that extend beyond revenue 
maximization for the company and are detrimental to society negative externalities. According to your 
values, recommendation and search to maximize engagement are problems that should not even be 
worked on in their currently prevailing paradigm because they have consequences on several of the 
items listed in Chapter 14 (e.g. disinformation, addiction, surveillance state, hate and crime).  

“The best minds of my generation are thinking about how to make people click ads. 
That sucks.” 

—Jeff Hammerbacher, computer scientist at Facebook 

In recent months, you have seen an upstart search engine enter the fray that is not ad-driven and is 
focused on ‘you,’ with ‘you’ referring to the user and the user’s information needs. This upstart gives you 
a glimmer of hope that something new and different can possibly break through the existing 
monopolies. However, your vision for something new is not centered on the singular user ‘you’, but on 
plural society. Therefore, you start planning a (fictional) search engine and information 
recommendation site of your own with a paradigm that aims to keep the negative externalities of the 
current ad/engagement paradigm at bay. Recalling a phrase that the conductor of your symphonic band 
used to say before concerts: “I nod to you and up we come,” you name your site Upwe.com.  

Does Upwe.com have legs? Can a search engine company really focus on serving a broader and 
selfless purpose? Many would argue that it is irrational to neither focus on solely serving the user (to 
make it attractive for paying subscribers) nor maximizing the platform’s engagement (to maximize the 
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company’s ad revenue). However, as you learned in Chapter 15, corporations are already moving toward 
broadening their purpose from maximizing shareholder value to maximizing the value for a larger set 
of stakeholders. And by focusing on the collective ‘we,’ you are appealing to a different kind of ethics: 
relationality instead of rationality. Relational ethics asks people to include considerations beyond 
themselves (which is the scope of rational ethics), especially their relationships with other people and 
the environment in determining the right action. One effect of relational thinking is bringing negative 
externalities to the forefront and mitigating an extractive or colonial mindset, including in the context 
of machine learning.1  

So coming back to the original question: is Upwe.com tenable? Does your vision for it have any hope? 
In this chapter, you’ll work toward an answer by: 

▪ sketching the reasons why society is so reliant on the digital platforms of ‘big tech,’ 

▪ examining the paradigm that leads to echo chambers, disinformation, and hate speech in greater 
detail, and 

▪ evaluating possible means for countering the negative externalities. 

 

18.1 Epistemic Dependence and Institutional Trust 
As you’re well aware, the amount of knowledge being created in our world is outpacing our ability to 
understand it. And it is only growing more complex. The exponential increase in digital information has 
been a boon for machine learning, but perhaps not so much for individual people and society. There is 
so much information in the modern world that it is impossible for any one person, on their own, to have 
the expertise to really understand or judge the truth of even a sliver of it. These days, even expert 
scientists do not understand the intricacies of all parts of their large-scale experimental apparatus.2 
Known as epistemic dependence, people have to rely on others to interpret knowledge for them. You’ve 
already learned about epistemic uncertainty (lack of knowledge) and epistemic advantage (knowledge 
of harms possessed by people with lived experience of marginalization) in Chapter 3 and Chapter 16, 
respectively. Epistemic dependence is along the same lines: obtaining knowledge you lack from people 
who possess it, trusting them without being able to verify the truth of that knowledge yourself. 

The people from whom you can obtain knowledge now includes anyone anywhere at lightning speed 
from their messages, articles, blog posts, comments, photos, podcasts, and videos on the internet. 
Epistemic dependence no longer has any bounds, but the space of knowledge is so vast that it requires 
search engines and recommendation algorithms to deal with retrieving the information. And what is 
going on behind the scenes is almost never clear to the user of a search engine. It is something abstract 
and mysterious in the ether. Even if the seeker of knowledge were aware of an information retrieval 
algorithm’s existence, which is typically based on machine learning, its workings would not be 
comprehensible. So not only do you have to trust the source and content of the knowledge, but also the 

 

 
1Sabelo Mhlambi. “From Rationality to Relationality: Ubuntu as an Ethical and Human Rights Framework for Artificial Intelli-
gence Governance.” Harvard University Carr Center Discussion Paper Series 2020-009, Jul. 2020.  
2Matthew Hutson. “What Do You Know? The Unbearable Vicariousness of Knowledge.” In: MIT Technology Review 123.6 
(Nov./Dec. 2020), pp. 74–79. 
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closed-box system bringing it to you.3 Nonetheless, people cannot entirely abdicate their epistemic 
responsibility to try to verify either the knowledge itself, its source, or the system bringing it forward. 

From the very beginning of the book, the trustworthiness of machine learning systems has been 
equated to the trustworthiness of individual other people, such as coworkers, advisors, or decision 
makers. This framing has followed you throughout the journey of becoming familiar with trustworthy 
machine learning: going from competence and reliability to interaction and selflessness. However, when 
discussing the trustworthiness of the machine learning backing information filtering in digital 
platforms, this correspondence breaks down. To the general public, the machine learning is beyond the 
limits of their knowledge and interaction to such a degree that the machine learning model is not an 
individual person any longer, but an institution like a bank, post office, or judicial system. It is just there. 
Members of the public are not so much users of machine learning as they are subject to machine 
learning.4 And institutional trust is different from interpersonal trust. 

Public trust in institutions is not directed towards a specific aspect, component or interaction with 
the institution, but is an overarching feeling about something pervasive. The general public does not go 
in and test specific measures of the trustworthiness of an institution like they may with a person, i.e. 
assessing a person’s ability, fairness, communication, beneficence, etc. (or even care to know the results 
of such an assessment). Members of the public rely on the system itself having the mechanisms in place 
to ensure that it is worthy of trust. The people’s trust is built upon mechanisms such as governance and 
control described in Chapter 14, so these mechanisms need to be understandable and not require 
epistemic dependence. To understand governance, people need to understand and agree with the values 
that the system is working to align itself toward. Thus as you envision Upwe.com, you must give your 
utmost attention to getting the paradigm right and making the values understandable to anyone. Putting 
these two things in place will enable the public to make good on their epistemic responsibility. 
Remember from Chapter 15 that intervening on the paradigm is the most effective leverage point of a 
system and is why the focus of this chapter is on the paradigm rather than on tackling negative 
externalities more directly, such as methods for detecting hate speech. 

 

18.2 Maximizing Engagement, or Not 
So how can you get the paradigm and values right? There are many things that you can do, but the main 
one is to deprioritize engagement as the primary goal. Engagement or attention is often measured by a 
user’s time on the platform and by their number of clicks. Maximizing engagement can lead to the 
extreme of the user becoming addicted to the platform. 
  

 

 
3Boaz Miller and Isaac Record. “Justified Belief in a Digital Age: On the Epistemic Implications of Secret Internet Technolo-
gies.” In: Episteme 10.2 (Jun. 2013), pp. 117–134.  
4Bran Knowles and John T. Richards. “The Sanction of Authority: Promoting Public Trust in AI.” In: Proceedings of the ACM Con-
ference on Fairness, Accountability, and Transparency. Mar. 2021, pp. 262–271. 
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“When you’re in the business of maximizing engagement, you’re not interested in 
truth. You’re not interested in harm, divisiveness, conspiracy. In fact, those are your 
friends.” 

—Hany Farid, computer scientist at University of California, Berkeley 

First, let’s see how single-mindedly valuing engagement leads to the harms of echo chambers, 
disinformation, and hate speech. The end of the section will briefly mention some alternatives to 
engagement maximization. 

18.2.1 Filter Bubbles and Echo Chambers 
When a recommendation system shows a user only content related to their interests, connections, and 
worldview, they are in a filter bubble. But how do filter bubbles relate to maximizing engagement with a 
digital platform? This kind of curation and personalization keeps serving the user content that they 
enjoy, which keeps them coming back for more of the same. Pleasant and fun things attract our 
attention.  

“When you see perspectives that are different from yours, it requires thinking and 
creates aggravations. As a for-profit company that's selling attention to advertisers, 
Facebook doesn't want that, so there's a risk of algorithmic reinforcement of 
homogeneity, and filter bubbles.”  

—Jennifer Stromer-Galley, information scientist at Syracuse University 

In an echo chamber, a person is repeatedly presented with the same information without any differences 
of opinion. This situation leads to their believing in that information to an extreme degree, even when it 
is false. Filter bubbles often lead to echo chambers. Although filter bubbles may be considered a helpful 
act of curation, by being in one, the user is not exposed to a diversity of ideas. They suffer from epistemic 
inequality.5 Recall from Chapter 16 that diversity leads to information elaboration—slowing down to think 
about contentious issues. Thus, by being in a filter bubble, people are apt to take shortcuts, which can 
lead to a variety of harms.  

18.2.2 Misinformation and Disinformation 
What are those fun things that attract us? Anything that is surprising attracts our attention.6 There are 
only so many ways that you can make the truth surprising before it becomes old hat.7 Permutations and 
combinations of falsehoods can continue to be surprising for much longer and thus keep a user more 

 

 
5Shoshana Zuboff. “Caveat Usor: Surveillance Capitalism as Epistemic Inequality.” In: After the Digital Tornado. Ed. by Kevin 
Werbach. Cambridge, England, UK: Cambridge University Press, 2020.  
6Laurent Itti and Pierre Baldi. “Bayesian Surprise Attracts Human Attention.” In: Vision Research 49.10 (Jun. 2009), pp. 1295–
1306.  
7Lav R. Varshney. “Limit Theorems for Creativity with Intentionality.” In: Proceedings of the International Conference on Computa-
tional Creativity. Sep. 2020, pp. 390–393.  
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engaged on a platform. Moreover, people spread false news significantly faster on social media 
platforms than true news.8 

“Having constructed a technological apparatus that disseminates information 
instantaneously and globally without regard to its veracity, we shouldn't be surprised 
that this apparatus has left us drowning in lies.” 

—Mark Pesce, futurist  

Clickbait is one example of false, surprising, and attractive content that drives engagement. It is a 
kind of misinformation (a falsehood that may or may not have been deliberately created to mislead) and 
also a kind of disinformation (a falsehood that was purposefully created to mislead). In fact, ‘big tech’ 
companies have been found to finance so-called clickbait farms to drive up their platforms’ 
engagement.9 

“Misinformation tends to be more compelling than journalistic content, as it's easy 
to make something interesting and fun if you have no commitment to the truth.” 

—Patricia Rossini, communications researcher at University of Liverpool 

Another type of disinformation enabled by machine learning is deepfakes. These are images or videos 
created with the help of generative modeling that make it seem as though a known personality is saying 
or doing something that they did not say or do. Deepfakes are used to create credible messaging that is 
false. 

Although some kinds of misinformation can be harmless, many kinds of disinformation can be 
extremely harmful to individuals and societies. For example, Covid-19 anti-vaccination disinformation 
on social media in 2021 led to vaccination hesitancy in many countries, which led to greater spread of 
the disease and death. Other disinformation has political motives that are meant to destabilize a nation.  

18.2.3 Hate Speech and Inciting Violence 
Whether false or true (disinformation or not), hate speech (abusive language against a particular group) 
attracts attention. Traditional media typically does not disseminate hate speech. The terms and 
conditions of many social media platforms also do not allow for hate speech and provide mechanisms 
for users to flag it. Nevertheless, since the problem of defining and moderating hate speech at the scale 
of worldwide digital platforms is difficult, much hate speech does get posted in social media platforms 
and then amplified via information filtering algorithms because it is so engaging.  

 

 
8Soroush Vosoughi, Deb Roy, and Sinan Aral. “The Spread of True and Fake News Online.” In: Science 359.6380 (Mar. 2018), pp. 
1146–1151.  
9Karen Hao. “How Facebook and Google Fund Global Misinformation.” In: MIT Technology Review. URL: https://www.technolo-
gyreview.com/2021/11/20/1039076/facebook-google-disinformation-clickbait, 2021. 
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Messages on social media platforms and actions in the real world are closely intertwined.10 Hate 
speech, offensive speech, and messages inciting violence on digital platforms foment many harms in 
the physical world. Several recent instances of hateful violence, such as against the Rohingya minority 
in Myanmar in 2018 and the United States Capitol Building in 2021, have been traced back to social 
media.  

18.2.4 Alternatives 
You’ve seen how maximizing engagement leads to negative externalities in the form of real-world 
harms. But are there proven alternatives you could use in the machine learning algorithm running 
Upwe.com’s information retrieval system instead? Partly because there are few incentives to work on 
the problem among researchers within ‘big tech,’ and because researchers elsewhere do not have the 
ability to try out or implement any ideas that they may have, the development of alternatives has been 
few and far between.11  

Nevertheless, as you develop the paradigm for Upwe.com, the following are a few concepts that you 
may include. You may want the platform to maximize the truth of the factual information that the user 
receives. You may want the platform to always return content from a diversity of perspectives and 
expose users to new relations with which they may form a diverse social network.12 You may wish to 
maximize some longer-term enjoyment for the user that they themselves might not realize is 
appropriate for them at the moment; this paradigm is known as extrapolated volition. Such concepts may 
be pursued as pre-processing, during model training, or as post-processing, but they would be limited 
to only those that you yourself came up with.13 A participatory value alignment process that includes 
members of marginalized groups would be even better to come up with all of the concepts you should 
include in Upwe.com’s paradigm. 

Furthermore, you need to have transparency in the paradigm you adopt so that all members of 
society can understand it. Facts and factsheets (covered in Chapter 13) are useful for presenting the 
lower-level test results of individual machine learning models, but not so much for institutional trust 
(except as a means for trained auditors to certify a system). CP-nets (covered in Chapter 14) are 
understandable representations of values, but do not reach all the way back to the value system or 
paradigm. It is unclear how to document and report the paradigm itself, and is a topic you should 
experiment with as you work on Upwe.com. 

 

 

 
10Alexandra Olteanu, Carlos Castillo, Jeremy Boy, and Kush R. Varshney. “The Effect of Extremist Violence on Hateful Speech 
Online.” In: Proceedings of the AAAI International Conference on Web and Social Media. Stanford, California, USA, Jun. 2018, pp. 221–
230.  
11Ivan Vendrov and Jeremy Nixon. “Aligning Recommender Systems as Cause Area.” In: Effective Altruism Forum. May 2019. 
12Jianshan Sun, Jian Song, Yuanchun Jiang, Yezheng Liu, and Jun Li. “Prick the Filter Bubble: A Novel Cross Domain Recom-
mendation Model with Adaptive Diversity Regularization.” In: Electronic Markets (Jul. 2021). 
13Jonathan Stray, Ivan Vendrov, Jeremy Nixon, Steven Adler, and Dylan Hadfield-Menell. “What Are You Optimizing For? 
Aligning Recommender Systems with Human Values.” In: Proceedings of the ICML Participatory Approaches to Machine Learning 
Workshop. Jul. 2020. 
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18.3 Taxes and Regulations 
There are few incentives for existing, entrenched platforms to pursue paradigms different from 
engagement maximization in the capitalist world we live in. Upwe.com will find it very difficult to break 
in without other changes. Short of completely upending society to be more relational via structures such 
as village-level democracy and self-reliance promoted by Mahatma Gandhi or anarchism,14 the primary 
ways to control the harms of maximizing engagement are through government-imposed taxes and 
regulation spurred by a change in societal norms.15 The norms should value the wellbeing of all people 
above all else. Viewing machine learning for information filtering as an institution rather than an 
individual, it is not surprising that the people who support interventions for controlling the negative 
externalities of the systems are those who have strong trust in institutions.16 Society may already be on 
a path to demanding greater control of digital media platforms.17  

While building up and developing Upwe.com, you should take a page out of Henry Heinz’s playbook 
(remember from the preface that in addition to developing trustworthy processed food products, he 
lobbied for the passage of the Pure Food and Drug Act) and push for stronger regulations. Some possible 
regulations recommended by the Aspen Institute are:18 

1. High reach content disclosure. Companies must regularly report on the content, source, and reach 
of pieces of knowledge that receive high engagement on their platform. 

2. Content moderation disclosure. Companies must report the content moderation policies of their 
platform and provide examples of moderated content to qualified individuals. 

3. Ad transparency. Companies must regularly report key information about every ad that appears 
on their platform. 

4. Superspreader accountability. People who spread disinformation that leads to real-world negative 
consequences are penalized. 

5. Communications decency control on ads and recommendation systems. Make companies liable for 
hateful content that spreads on their platform due to the information filtering algorithm, even if 
it is an ad. 

Many of these recommended regulations enforce transparency since it is a good way of building 
institutional trust. However, they do not provide governance on the paradigm underlying the platform 
because it is difficult to measure the paradigm. Nevertheless, they will control the paradigm to some 
extent. If social media platforms are deemed public utilities or common carriers, like telephone and 
electricity providers, then even more strict regulations are possible. Importantly, if you have designed 

 

 
14Brian Martin. Nonviolence versus Capitalism. London, England, UK: War Resisters’ International, 2001.  
15Daron Acemoglu. “AI’s Future Doesn’t Have to Be Dystopian.” In: Boston Review. URL: https://bostonreview.net/forum/ais-
future-doesnt-have-to-be-dystopian/, 2021. 
16Emily Saltz, Soubhik Barari, Claire Leibowicz, and Claire Wardle. “Misinformation Interventions are Common, Divisive, and 
Poorly Understood.” In: Harvard Kennedy School Misinformation Review 2.5 (Sep. 2021). 
17Throughout the chapter, the governance of platforms is centered on the needs of the general public, but the needs of legiti-
mate content creators are just as important. See: Li Jin and Katie Parrott. “Legitimacy Lost: How Creator Platforms Are Eroding 
Their Most Important Resource.” URL: https://every.to/means-of-creation/legitimacy-lost, 2021.  
18Katie Couric, Chris Krebs, and Rashad Robinson. Aspen Digital Commission on Information Disorder Final Report. Nov. 2021.  
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Upwe.com to already be on the right side of regulations when they become binding, you will have a leg 
up on other platforms and might have a chance of being sustainable.  

In parallel, you should also try to push for direct ways of controlling the paradigm rather than 
controlling the negative externalities because doing so will be more powerful. Regulations are one 
recognized way of limiting negative externalities; Pigouvian taxes are the other main method recognized 
by economists. A Pigouvian tax is precisely a tax on a negative externality to discourage the behaviors 
that lead to it. A prominent example is a tax on carbon emissions levied on companies that pollute the 
air. In the context of social media platforms, the tax would be on every ad that was delivered based on a 
targeting model driven by machine learning.19 Such a tax would directly push ‘big tech’ companies to 
change their paradigm while leaving the Upwe.com paradigm alone. 

Seeing out your vision of an Upwe.com that contributes to the wellbeing of all members of society 
may seem like an insurmountable challenge, but do not lose hope. Societal norms are starting to push 
for what you want to build, and that is the key. 

 

18.4 Conclusion 
▪ There is so much and such complicated knowledge in our world today that it is impossible for 

anyone to understand it all, or even to verify it. We all have epistemic dependence on others. 

▪ Much of that dependence is satisfied by content on the internet that comes to us on information 
platforms filtered by machine learning algorithms. The paradigm driving those algorithms is 
maximizing the engagement of the user on the platform. 

▪ The engagement maximization paradigm inherently leads to side effects such as filter bubbles, 
disinformation, and hate speech, which have real-world negative consequences. 

▪ The machine learning models supporting content recommendation on the platforms is so 
disconnected from the experiences of the general public that it does not make sense to focus on 
models’ interpersonal trustworthiness, which has been the definition of trustworthiness 
throughout the book. An alternative notion of institutional trustworthiness is required.  

▪ Institutional trustworthiness is based on governance mechanisms and their transparency, which 
can be required by government regulations if there is enough societal pressure for them. 
Transparency may help change the underlying paradigm, but taxes may be a stronger direct 
push.  

▪ A new paradigm based on relational ethics is needed, which centers truth, a diversity of 
perspectives, and wellbeing for all. 

 

“I nod to you and up we come.” 

—Norbert Buskey, band teacher at Fayetteville-Manlius High School 

 

 
19Paul Romer. “A Tax To Fix Big Tech.” In: New York Times (7 May 2019), p. 23. 
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Shortcut 
Even though I have admonished you throughout the entire book to slow down, think, and not take 
shortcuts, I know some of you will still want to take shortcuts. Don’t do it. But if you’re adamant about it 
and are going take a shortcut anyway, I might as well equip you properly. 

Here is a picture showing how I structured the book, going from bottom to top. This direction 
makes sense pedagogically because you need to understand the concepts at the bottom before you can 
understand the nuances of the concepts that are higher up. For example, it is difficult to understand 
fairness metrics without first covering detection theory, and it is difficult to understand value 
elicitation about fairness metrics without first covering fairness. However, if you want to jump right 
into things, you should notionally start at the top and learn things from below as you go along. 

 

Accessible caption. A stack of items in 8 layers. Top layer: ethics principles; layer 2: governance; layer 
3: transparency, value alignment; layer 4: interpretability/explainability, testing, uncertainty 
quantification; layer 5: distributional robustness, fairness, adversarial robustness; layer 6: detection 
theory, supervised learning, causal modeling; layer 7: data biases, data consent, data privacy; bottom 
layer: probability and possibility theory, data. An upward arrow is labeled pedagogical direction. A 
downward arrow is labeled notional shortcut. 
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The ultimate shortcut is to give you a recipe to follow. 
 
Preparation Steps: 

1. Assemble socioculturally diverse team of problem owners, data engineers and model validators 
including members with lived experience of marginalization. 

2. Determine ethics principles, making sure to center the most vulnerable people. 

3. Set up data science development and deployment environment that includes fact flow tool to 
automatically collect and version-control digital artifacts. 

4. Install software libraries in environment for testing and mitigating issues related to fairness 
and robustness, and computing explanations and uncertainties. 

 

Lifecycle Steps: 

1. Identify problem. 

2. Conduct facilitated participatory design session including panel of diverse stakeholders to an-
swer the following four questions according to ethics principles: 

a. Should the team work on the problem? 

b. Which pillars of trustworthiness are of concern? 

c. What are appropriate metrics? 

d. What are acceptable ranges of metric values? 

3. Set up quantitative facts for the identified pillars of trustworthiness and their metrics.  

4. If the problem should be worked on, identify relevant dataset. 

5. Ensure that dataset has been obtained with consent and does not violate privacy standards. 

6. Understand semantics of dataset in detail, including potential unwanted biases. 

7. Prepare data and conduct exploratory data analysis with a particular focus on unwanted biases. 

8. Train machine learning model. 

9. Evaluate model for metrics of trustworthiness of concern, including tests that cover edge cases. 
Compute explanations or uncertainties if of concern. 

10. If metric values are outside acceptable ranges, try other data, try other learning algorithms, or 
apply mitigation algorithms until metric values are within acceptable ranges. 

11. Deploy model, compute explanations or uncertainties along with predictions if of concern, and 
keep monitoring model for metrics of trustworthiness of concern. 


