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13  
Transparency 

Imagine that you are a model validator in the model risk management department at JCN Corporation, 
the (fictional) information technology company undergoing an enterprise transformation first 
encountered in Chapter 7. In addition to using machine learning for estimating the skills of its 
employees, JCN Corporation is rolling out machine learning in another human resources effort: 
proactive retention. Using historical employee administrative data, JCN Corporation is developing a 
system to predict employees at risk of voluntarily resigning in the next six months and offering 
incentives to retain them. The data includes internal corporate information on job roles and 
responsibilities, compensation, market demand for jobs, performance reviews, promotions, and 
management chains. JCN Corporation has consent to use the employee administrative data for this 
purpose through employment contracts. The data was made available to JCN Corporation’s data science 
team under institutional control after a syntactic anonymity transformation was performed.  

The team has developed several attrition prediction models using different machine learning 
algorithms, keeping accuracy, fairness, distributional robustness, adversarial robustness, and 
explainability as multiple goals. If the attrition prediction models are fair, the proactive retention system 
could make employment at JCN Corporation more equitable than it is right now. The project has moved 
beyond the problem specification, data understanding, data preparation, and modeling phases of the 
development lifecycle and is now in the evaluation phase.  

“The full cycle of a machine learning project is not just modeling. It is finding the 
right data, deploying it, monitoring it, feeding data back [into the model], showing 
safety—doing all the things that need to be done [for a model] to be deployed. [That 
goes] beyond doing well on the test set, which fortunately or unfortunately is what we 
in machine learning are great at.” 

—Andrew Ng, computer scientist at Stanford University 
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Your job as the model validator is to test out and compare the models to ensure at least one of them 
is safe and trustworthy before it is deployed. You also need to obtain buy-in from various parties before 
you can sign your name and approve the model’s deployment. To win the support of internal JCN 
Corporation executives and compliance officers, external regulators,1 and members of a panel of diverse 
employees and managers within the company you’ll assemble, you need to provide transparency by 
communicating not only the results of independent tests you conduct, but also what happened in the 
earlier phases of the lifecycle. (Transparent reporting to the general public is also something you should 
consider once the model is deployed.) Such transparency goes beyond model interpretability and 
explainability because it is focused on model performance metrics and their uncertainty 
characterizations, various pieces of information about the training data, and the suggested uses and 
possible misuses of the model.2 All of these pieces of information are known as facts.  

Not all of the various consumers of your transparent reporting are looking for the same facts or the 
same level of detail. Modeling tasks besides predicting voluntary attrition may require different facts. 
Transparency has no one-size-fits-all solution. Therefore, you should first run a small design exercise 
to understand which facts and details are relevant for the proactive retention use case and for each 
consumer, and the presentation style preferred by each consumer.3 (Such an exercise is related to value 
alignment, which is elaborated upon in Chapter 14.) The artifact that ultimately presents a collection of 
facts to a consumer is known as a factsheet. After the design exercise, you can be off to the races with 
creating, collecting, and communicating information about the lifecycle. 

You are shouldering a lot of responsibility, so you don’t want to perform your job in a haphazard way 
or take any shortcuts. To enable you to properly evaluate and validate the JCN Corporation voluntary 
resignation models and communicate your findings to various consumers, this chapter teaches you to: 

▪ create factsheets for transparent reporting, 

▪ capture facts about the model purpose, data provenance, and development steps, 

▪ conduct tests that measure the probability of expected harms and the possibility of unexpected 
harms to generate quantitative facts, 

▪ communicate these test result facts and their uncertainty, and 

▪ defend your efforts against people who are not inclined to trust you. 

You’re up to the task padawan, so let’s start equipping you with the tools you need. 
 

13.1 Factsheets 
Transparency should reveal several kinds of facts that come from different parts of the lifecycle.4 From 
the problem specification phase, it is important to capture the goals, intended uses, and possible 

 

 
1Regulations play a role in the company’s employee retention programs because they are subject to fair employment laws.  
2Q. Vera Liao and Kush R. Varshney. “Human-Centered Explainable AI (XAI): From Algorithms to User Experiences.” 
arXiv:2110.10790, 2021. 
3John Richards, David Piorkowski, Michael Hind, Stephanie Houde, and Aleksandra Mojsilović. “A Methodology for Creating AI 
FactSheets.” arXiv:2006.13796, 2020.  
4Matthew Arnold, Rachel K. E. Bellamy, Michael Hind, Stephanie Houde, Sameep Mehta, Aleksandra Mojsilović, Ravi Nair, 
Karthikeyan Natesan Ramamurthy, Alexandra Olteanu, David Piorkowski, Darrell Reimer, John Richards, Jason Tsay, and 
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misuses of the system along with who was involved in making those decisions (e.g. were diverse voices 
included?). From the data understanding phase, it is important to capture the provenance of the data, 
including why it was originally collected. From the data preparation phase, it is important to catalog the 
data transformations and feature engineering steps employed by the data engineers and data scientists, 
as well as any data quality analyses that were performed. From the modeling phase, it is important to 
understand what algorithmic choices were made and why, including which mitigations were employed. 
From the evaluation phase, it is important to test for trust-related metrics and their uncertainties 
(details are forthcoming in the next section). Overall, there are two types of facts for you to transparently 
report: (1) (qualitative) knowledge from inside a person’s head that must be explicitly asked about, and 
(2) data, processing steps, test results, models, or other artifacts that can be grabbed digitally.  

How do you get access to all this information coming from all parts of the machine learning 
development lifecycle and from different personas? Wouldn’t it be convenient if it were documented 
and transparently reported all along? Because of the tireless efforts of your predecessors in the model 
risk management department, JCN Corporation has instrumented the entire lifecycle with a mandatory 
tool that manages machine learning development by creating checklists and pop-up reminders for 
different personas to enter qualitative facts at the time they should be top-of-mind for them. The tool 
also automatically collects and version-controls digital artifacts as facts as soon as they are generated. 
Let’s refer to the tool as fact flow, which is shown in Figure 13.1. 

 
Figure 13.1. The fact flow captures qualitative and quantitative facts generated by different people and processes 
throughout the machine learning development lifecycle and renders them into factsheets appropriate for different 
consumers. Accessible caption. Facts from people and technical steps in the development lifecycle go 
into a renderer which may output a detailed factsheet, a label factsheet, or a SDoC factsheet. 

 

 
Kush R. Varshney. “FactSheets: Increasing Trust in AI Services through Supplier’s Declarations of Conformity.” In: IBM Journal 
of Research and Development 63.4/5 (Jul./Sep. 2019), p. 6.  
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Since machine learning is a general purpose technology (recall the discussion in Chapter 1), there is 
no universal set of facts that applies to all machine learning models irrespective of their use and 
application domain. The facts to validate the machine learning systems for m-Udhār Solar, 
Unconditionally, ThriveGuild, and Wavetel (fictional companies discussed in previous chapters) are not 
exactly the same; more precision is required.5 Moreover, the set of facts that make it to a factsheet and 
their presentation depends on the consumer. As the model validator, you need a full dump of all the 
facts. You should adjust the factsheet to a summary label, document, or presentation slides for personas 
who, to overcome their cognitive biases, need fewer details. You should broadly disseminate simpler 
factsheets among JCN Corporation managers (decision makers), employees (affected users), and the 
general public who yearn for transparency. You will have determined the set of facts, their level of detail, 
and their presentation style for different personas through your initial design exercise. Fact flow has a 
renderer for you to create different factsheet presentations. 

You should also sign and release a factsheet rendered as a supplier’s declaration of conformity (SDoC) 
for external regulators. An SDoC is a written assurance that a product or service conforms to a standard 
or technical regulation. Your declaration is based on your confidence in the fact flow tool and the 
inspection of the results you have conducted.6 Conformity is one of several related concepts (compliance, 
impact, and accountability), but different from each of them.7 Conformity is abiding by specific 
regulations whereas compliance is abiding by broad regulatory frameworks. Conformity is a statement 
on abiding by regulations at the current time whereas impact is abiding by regulations into an uncertain 
future. Conformity is a procedure by which to show abidance whereas accountability is a responsibility 
to do so. As such, conformity is the narrowest of definitions and is the one that forms the basis for the 
draft regulation of high-risk machine learning systems in the European Economic Area and may become 
a standard elsewhere too. Thus SDoCs represent an up-and-coming requirement for machine learning 
systems used in high-stakes decision making, including proactive retention at JCN Corporation. 

“We really need standards for what an audit is.”  

—Rumman Chowdhury, machine learning ethicist at Twitter 

 

13.2 Testing for Quantitative Facts 
Many quantitative facts come from your model testing in the evaluation phase. Testing a machine 
learning model seems easy enough, right? The JCN Corporation data scientists already obtained good 
accuracy numbers on an i.i.d. held-out data set, so what’s the big deal? First, you cannot be sure that the 

 

 
5Ryan Hagemann and Jean-Marc Leclerc. “Precision Regulation for Artificial Intelligence.” In: IBM Policy Lab Blog (Jan. 2020). 
URL: https://www.ibm.com/blogs/policy/ai-precision-regulation. 
6National Institute of Standards and Technology. “The Use of Supplier’s Declaration of Conformity.” URL: 
https://www.nist.gov/system/files/documents/standardsgov/Sdoc.pdf.  
7Nikolaos Ioannidis and Olga Gkotsopoulou. “The Palimpsest of Conformity Assessment in the Proposed Artificial Intelligence 
Act: A Critical Exploration of Related Terminology.” In: European Law Blog (Jul. 2021). URL: https://europeanlaw-
blog.eu/2021/07/02/the-palimpsest-of-conformity-assessment-in-the-proposed-artificial-intelligence-act-a-critical-explora-
tion-of-related-terminology. 
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data scientists completely isolated their held-out data set and didn’t incur any leakage into modeling.8 
As the model validator, you can ensure such isolation in your testing. 

Importantly, testing machine learning systems is different from testing other kinds of software 
systems.9 Since the whole point of machine learning systems is to generalize from training data to label 
new unseen input data points, they suffer from the oracle problem: not knowing what the correct answer 
is supposed to be for a given input.10 The way around this problem is not by looking at a single 
employee’s input data point and examining its corresponding output attrition prediction, but by looking 
at two or more variations that should yield the same output. This approach is known as using 
metamorphic relations.  

For example, a common test for counterfactual fairness (described in Chapter 10) is to input two data 
points that are the same in every way except having different values of a protected attribute. If the 
predicted label is not the same for both of them, the test for counterfactual fairness fails. The important 
point is that the actual predicted label value (will voluntarily resign/won’t voluntarily resign) is not the 
key to the test, but whether that predicted value is equal for both inputs. As a second example for 
competence, if you multiply a feature’s value by a constant in all training points, train the model, and 
then score a test point that has been scaled by the same constant, you should get the same prediction of 
voluntary resignation as if you had not done any scaling at all. In some other application involving semi-
structured data, a metamorphic relation for an audio clip may be to speed it up or slow it down while 
keeping the pitch the same. Coming up with such metamorphic relations requires ingenuity; automating 
this process is an open research question. 

In addition to the oracle problem of machine learning, there are three factors you need to think about 
that go beyond the typical testing done by JCN Corporation data scientists while generating facts: 

1. testing for dimensions beyond accuracy, such as fairness, robustness, and explainability, 

2. pushing the system to its limits so that you are not only testing average cases, but also covering 
edge cases, and 

3. quantifying aleatoric and epistemic uncertainty around the test results. 

Let’s look into each of these three concerns in turn. 

13.2.1 Testing for Dimensions of Trustworthiness 
If you’ve reached this point in the book, it will not surprise you that testing for accuracy (and related 
performance metrics described in Chapter 6) is not sufficient when evaluating machine learning models 
that are supposed to be trustworthy. You also need to test for fairness using metrics such as disparate 
impact ratio and average odds difference (described in Chapter 10), adversarial robustness using 
metrics such as empirical robustness and CLEVER score (described in Chapter 11), and explainability 

 

 
8Sebastian Schelter, Yuxuan He, Jatin Khilnani, and Julia Stoyanovich. “FairPrep: Promoting Data to a First-Class Citizen in 
Studies of Fairness-Enhancing Interventions.” In: Proceedings of the International Conference on Extending Database Technology. 
Copenhagen, Denmark, Mar.–Apr. 2020, pp. 395–398. 
9P. Santhanam. “Quality Management of Machine Learning Systems.” In: Proceedings of the AAAI Workshop on Engineering Depend-
able and Secure Machine Learning Systems. New York, New York, USA, Feb. 2020.  
10Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. “Machine Learning Testing: Survey, Landscapes and Horizons.” In: IEEE 
Transactions on Software Engineering 48.1 (Jan. 2022), pp. 1–36.  
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using metrics such as faithfulness (described in Chapter 12).11 You also need to test for accuracy under 
distribution shifts (described in Chapter 9). Since the JCN Corporation data science team has created 
multiple attrition prediction models, you can compare the different options. Once you have computed 
the metrics, you can display them in the factsheet as a table such as Table 13.1 or in visual ways to be 
detailed in Section 13.3 to better understand their domains of competence across dimensions of 
trustworthiness. (Remember that domains of competence for accuracy were a main topic of Chapter 7.) 

Table 13.1. Result of testing several attrition models for multiple trust-related metrics. 

Model Accuracy Accuracy with 
Distribution 

Shift 

Disparate 
Impact 
Ratio 

Empirical 
Robust-

ness 

Faithful-
ness 

logistic regression 0.869 0.775 0.719 0.113 0.677 

neural network 0.849 0.755 1.127 0.127 0.316 

decision forest (boosting) 0.897 0.846 1.222 0.284 0.467 

decision forest (bagging) 0.877 0.794 0.768 0.182 0.516 

 
In these results, the decision forest with boosting has the best accuracy and robustness to 

distribution shift, but the poorest adversarial robustness, and poor fairness and explainability. In 
contrast, the logistic regression model has the best adversarial robustness and explainability, while 
having poorer accuracy and distributional robustness. None of the models have particularly good 
fairness (disparate impact ratio), and so the data scientists should go back and do further bias 
mitigation. The example emphasizes how looking only at accuracy leaves you with blind spots in the 
evaluation phase. As the model validator, you really do need to test for all the different metrics. 

13.2.2 Generating and Testing Edge Cases 
The primary way to test or audit machine learning models is by feeding in data from different employees 
and looking at the output attrition predictions that result.12 Using a held-out dataset with the same 
probability distribution as the training data will tell you how the model performs in the average case. 
This is how to estimate empirical risk (the empirical approximation to the probability of error), and thus 
the way to test for the first of the two parts of safety: the risk of expected harms. Similarly, using held-
out data with the same probability distribution is common practice (but not necessary) to test for 
fairness and explainability. Testing for distributional robustness, by definition however, requires input 
data points drawn from a probability distribution different from the training data. Similarly, computing 
empirical adversarial robustness involves creating adversarial example employee features as input.  

In Chapter 11, you have already learned how to push AI systems to their limits using adversarial 
examples. These adversarial examples are test cases for unexpected, worst-case harms that go beyond 

 

 
11Moninder Singh, Gevorg Ghalachyan, Kush R. Varshney, and Reginald E. Bryant. “An Empirical Study of Accuracy, Fairness, 
Explainability, Distributional Robustness, and Adversarial Robustness.” In: Proceedings of the KDD Workshop on Measures and Best 
Practices for Responsible AI. Aug. 2021.  
12Aniya Aggarwal, Samiulla Shaikh, Sandeep Hans, Swastik Haldar, Rema Ananthanarayanan, and Diptikalyan Saha. “Testing 
Framework for Black-Box AI Models.” In: Proceedings of the IEEE/ACM International Conference on Software Engineering. May 2021, 
pp. 81–84.  
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the probability distribution of the training and held-out datasets. And in fact, you can think about 
crafting adversarial examples for fairness and explainability as well as for accuracy.13 Another way to 
find edge cases in machine learning systems is by using a crowd of human testers who are challenged 
to ‘beat the machine.’14 They get points in a game for coming up with rare but catastrophic data points. 

Importantly, the philosophy of model validators such as yourself who are testing the proactive 
retention system is different from the philosophy of malicious actors and ‘machine beaters.’ These 
adversaries need to succeed just once to score points, whereas model validators need to efficiently 
generate test cases that have good coverage and push the system from many different sides. You and 
other model validators have to be obsessed with failure; if you’re not finding flaws, you have to think that 
you’re not trying hard enough.15 Toward this end, coverage metrics have been developed for neural 
networks that measure if every neuron in the model has been tested. However, such coverage metrics 
can be misleading and do not apply to other kinds of machine learning models.16 Developing good 
coverage metrics and test case generation algorithms to satisfy those coverage metrics remains an open 
research area. 

13.2.3 Uncertainty Quantification 
As you evaluate and validate proactive retention models for JCN Corporation, testing gives you estimates 
of the different dimensions of trust as in Table 13.1. But as you’ve learned throughout the book, 
especially Chapter 3, uncertainty is everywhere, including in those test results. By quantifying the 
uncertainty of trust-related metrics, you can be honest and transparent about the limitations of the test 
results. Several different methods for uncertainty quantification are covered in this section, 
summarized in Figure 13.2. 

“I can live with doubt and uncertainty and not knowing. I think it’s much more 
interesting to live not knowing than to have answers which might be wrong.” 

—Richard Feynman, physicist at California Institute of Technology 

The total predictive uncertainty includes both aleatoric and epistemic uncertainty. It is indicated by 
the score for well-calibrated classifiers (remember the definition of calibration, Brier score, and 
calibration loss17 from Chapter 6). When the attrition prediction classifier is well-calibrated, the score is 

 

 
13Botty Dimanov, Umang Bhatt, Mateja Jamnik, and Adrian Weller. “You Shouldn’t Trust Me: Learning Models Which Conceal 
Unfairness from Multiple Explanation Methods.” In: Proceedings of the European Conference on Artificial Intelligence. Santiago de 
Compostela, Spain, Aug.–Sep. 2020. Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju. “Fooling 
LIME and SHAP: Adversarial Attacks on Post Hoc Explanation Methods.” In: Proceedings of the AAAI/ACM Conference on AI, Ethics, 
and Society. New York, New York, USA, Feb. 2020, pp. 180–186. 
14Joshua Attenberg, Panos Ipeirotis, and Foster Provost. “Beat the Machine: Challenging Humans to Find a Predictive Model’s 
‘Unknown Unknowns.’” In: Journal of Data and Information Quality 6.1 (Mar. 2015), p. 1.  
15Thomas G. Diettrich. “Robust Artificial Intelligence and Robust Human Organizations.” In: Frontiers of Computer Science 13.1 
(2019), pp. 1–3. 
16Dusica Marijan and Arnaud Gotlieb. “Software Testing for Machine Learning.” In: Proceedings of the AAAI Conference on Artificial 
Intelligence. New York, New York, USA, Feb. 2020, pp. 13576–13582.  
17A popular variation of the calibration loss detailed in Chapter 6, known as the expected calibration error, uses the average abso-
lute difference rather than the average squared difference. 
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also the probability of an employee voluntarily resigning being 1; scores close to 0 and 1 are certain 
predictions and scores close to 0.5 are uncertain predictions. Nearly all of the classifiers that we’ve 
talked about in the book give continuous-valued scores as output, but many of them, such as the naïve 
Bayes classifier and modern deep neural networks, tend not to be well-calibrated.18 They have large 
values of calibration loss because their calibration curves are not straight diagonal lines like they ideally 
should be (remember the picture of a calibration curve dropping below and pushing above the ideal 
diagonal line in Figure 6.4).  

 
Figure 13.2. Different methods for quantifying the uncertainty of classifiers. Accessible caption. Hierarchy 
diagram with uncertainty quantification as the root. Uncertainty quantification has children total pre-
dictive uncertainty, and separate aleatoric and epistemic uncertainty. Total predictive uncertainty has 
children mitigate miscalibration and estimate uncertainty. Mitigate miscalibration has children Platt 
scaling and isotonic regression. Estimate uncertainty has children jackknife and infinitesimal jack-
knife. Separate aleatoric and epistemic uncertainty has children Bayesian methods and ensemble 
methods. 

Just like in other pillars of trustworthiness, algorithms for obtaining uncertainty estimates and 
mitigating poor calibration apply at different stages of the machine learning pipeline. Unlike other topic 
areas, there is no pre-processing for uncertainty quantification. There are, however, methods that apply 
during model training and in post-processing. Two post-processing methods for mitigating poor 
calibration, Platt scaling and isotonic regression, both take the classifier’s existing calibration curve and 
straighten it out. Platt scaling assumes that the existing calibration curve looks like a sigmoid or logistic 

 

 
18Alexandru Niculescu-Mizil and Rich Caruana. “Predicting Good Probabilities with Supervised Learning.” In: Proceedings of the 
International Conference on Machine Learning. Bonn, Germany, Aug. 2005, pp. 625–632. Chuan Guo, Geoff Pleiss, Yu Sun, and 
Killian Q. Weinberger. “On Calibration of Modern Neural Networks.” In: Proceedings of the International Conference on Machine 
Learning. Sydney, Australia, Aug. 2017, pp. 1321–1330. 
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activation function whereas isotonic regression can work with any shape of the existing calibration 
curve. Isotonic regression requires more data than Platt scaling to work effectively.  

A post-processing method for total predictive uncertainty quantification that does not require you 
to start with an existing classifier score works in almost the same way as computing deletion diagnostics 
described in Chapter 12 for explanation. You train many attrition models, leaving one training data point 
out each time. You compute the standard deviation of the accuracy of each of these models and report 
this number as an indication of predictive uncertainty. In the uncertainty quantification context, this is 
known as a jackknife estimate. You can do the same thing for other metrics of trustworthiness as well, 
yielding an extended table of results that goes beyond Table 13.1 to also contain uncertainty 
quantification, shown in Table 13.2. Such a table should be displayed in a factsheet. 

Table 13.2. Result of testing several attrition models for multiple trust-related metrics with uncertainty quantified 
using standard deviation below the metric values. 

Model Accuracy Accuracy with 
Distribution 

Shift 

Disparate 
Impact 
Ratio 

Empirical 
Robust-

ness 

Faithful-
ness 

logistic regression 0.869 
(±0.042) 

0.775 
(±0.011) 

0.719 
(±0.084) 

0.113 
(±0.013) 

0.677 
(±0.050) 

neural network 0.849 
(±0.046) 

0.755 
(±0.013) 

1.127 
(±0.220) 

0.127 
(±0.021) 

0.316 
(±0.022) 

decision forest (boosting) 0.897 
(±0.041) 

0.846 
(±0.009) 

1.222 
(±0.346) 

0.284 
(±0.053) 

0.467 
(±0.016) 

decision forest (bagging) 0.877 
(±0.036) 

0.794 
(±0.003) 

0.768 
(±0.115) 

0.182 
(±0.047) 

0.516 
(±0.038) 

 
Chapter 12 noted that deletion diagnostics are costly to compute directly, which motivated influence 

functions as an approximation for explanation. The same kind of approximation involving gradients and 
Hessians, known as an infinitesimal jackknife, can be done for uncertainty quantification.19 Influence 
functions and infinitesimal jackknives may also be derived for some fairness, explainability, and 
robustness metrics.20  

Using a calibrated score or (infinitesimal) jackknife-based standard deviation as the quantification 
of uncertainty does not allow you to decompose the total predictive uncertainty into aleatoric and 
epistemic uncertainty, which can be important as you decide to approve the JCN Corporation proactive 
retention system. There are, however, algorithms applied during model training that let you estimate 
the aleatoric and epistemic uncertainties separately. These methods are like directly interpretable 
models (Chapter 12) and bias mitigation in-processing (Chapter 10) in terms of their place in the 

 

 
19Ryan Giordano, Will Stephenson, Runjing Liu, Michael I. Jordan, and Tamara Broderick. “A Swiss Army Infinitesimal Jack-
knife.” In: Proceedings of the International Conference on Artificial Intelligence and Statistics. Naha, Okinawa, Japan, Apr. 2019, pp. 
1139–1147. 
20Hao Wang, Berk Ustun, and Flavio P. Calmon. “Repairing without Retraining: Avoiding Disparate Impact with Counterfactual 
Distributions.” In: Proceedings of the International Conference on Machine Learning. Long Beach, California, USA, Jul. 2019, pp. 
6618–6627. Brianna Richardson and Kush R. Varshney. “Addressing the Design Needs of Implementing Fairness in AI via In-
fluence Functions.” In: INFORMS Annual Meeting. Anaheim, California, USA, Oct. 2021. 
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pipeline. The basic idea to extract the two uncertainties is as follows.21 The total uncertainty of a 
prediction, i.e. the predicted label 𝑌̂ given the features 𝑋, is measured using the entropy 𝐻( 𝑌̂ ∣∣ 𝑋 ) 
(remember entropy from Chapter 3). This prediction uncertainty includes both epistemic and aleatoric 
uncertainty; it is general and does not fix the choice of the actual classifier function 𝑦̂∗(⋅) within a 
hypothesis space ℱ. The epistemic uncertainty component captures the lack of knowledge of a good 
hypothesis space and a good classifier within a hypothesis space. Therefore, epistemic uncertainty goes 
away once you fix the choice of hypothesis space and classifier. All that remains is aleatoric uncertainty. 
The aleatoric uncertainty is measured by another entropy 𝐻( 𝑌̂ ∣∣ 𝑋, 𝑓 ), averaged across classifiers 𝑓(⋅) ∈
ℱ whose probability of being a good classifier is based on the training data. The epistemic uncertainty is 
then the difference between 𝐻( 𝑌̂ ∣∣ 𝑋 ) and the average 𝐻( 𝑌̂ ∣∣ 𝑋, 𝑓 ). 

There are a couple ways to obtain these two entropies and thereby the aleatoric and epistemic 
uncertainty. Bayesian methods, including Bayesian neural networks, are one large category of methods 
that learn full probability distributions for the features and labels, and thus the entropies can be 
computed from the probability distribution. The details of Bayesian methods are beyond the scope of 
this book.22 Another way to obtain the aleatoric and epistemic uncertainty is through ensemble methods, 
including ones involving bagging and dropout that explicitly or implicitly create several independent 
machine learning models that are aggregated (bagging and dropout were described in Chapter 7).23 The 
average classifier-specific entropy for characterizing aleatoric uncertainty is estimated by simply 
averaging the entropy of several data points for all the models in the trained ensemble considered 
separately. The total uncertainty is estimated by computing the entropy of the entire ensemble together.  

 

13.3 Communicating Test Results and Uncertainty 
Recall from Chapter 12, that you must overcome the cognitive biases of the consumer of an explanation. 
The same is true for communicating test results and uncertainty. Researchers have found that the 
presentation style has a large impact on the consumer.24 So don’t take the shortcut of thinking that your 
job is done once you’ve completed the testing and uncertainty quantification. You’ll have to justify your 
model validation to several different factsheet consumers (internal stakeholders within JCN 
Corporation, external regulators, et al.) and it is important for you to think about how you’ll 
communicate the results.  

 

 
21Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen Udluf. “Decomposition of Uncertainty in 
Bayesian Deep Learning for Efficient and Risk-Sensitive Learning.” In: Proceedings of the International Conference on Machine 
Learning. Stockholm, Sweden, Jul. 2018, pp. 1184–1193. 
22Alex Kendall and Yarin Gal. “What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?” In: Advances 
in Neural Information Processing Systems 31 (Dec. 2017), pp. 5580–5590.  
23Yarin Gal and Zoubin Gharahmani. “Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learn-
ing.” In: Proceedings of the International Conference on Machine Learning. New York, New York, USA, Jun. 2016, pp. 1050–1059. 
Aryan Mobiny, Pengyu Yuan, Supratik K. Moulik, Naveen Garg, Carol C. Wu, and Hien Van Nguyen. “DropConnect is Effective 
in Modeling Uncertainty of Bayesian Deep Networks.” In: Scientific Reports 11.5458 (Mar. 2021). Mohammad Hossein Shaker 
and Eyke Hüllermeier. “Aleatoric and Epistemic Uncertainty with Random Forests.” In: Proceedings of the International Sympo-
sium on Intelligent Data Analysis. Apr. 2020, pp. 444–456. 
24Po-Ming Law, Sana Malik, Fan Du, and Moumita Sinha. “The Impact of Presentation Style on Human-in-the-Loop Detection of 
Algorithmic Bias.” In: Proceedings of the Graphics Interface Conference. May 2020, pp. 299–307. 
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13.3.1 Visualizing Test Results 
Although tables of numbers such as Table 13.2 are complete and effective ways of conveying test results 
with uncertainty, there are some other options to consider. First, there are nascent efforts to use 
methods from explainability like contrastive explanations and influence functions to help consumers 
understand why a model has a given fairness metric or uncertainty level.25 More importantly, 
visualization is a common approach. 

The various trust dimension metrics you have tested are often presented as bar graphs. The trust 
metrics of multiple models can be compared with adjacent bars as in Figure 13.3. However, it is not clear 
whether this visualization is more effective than simply presenting a table like Table 13.1. Specifically, 
since model comparisons are to be done across dimensions that are on different scales, one dimension 
with a large dynamic range can warp the consumer’s perception. Also, if some metrics have better values 
when they are larger (e.g. accuracy) and other metrics have better values when they are smaller (e.g. 
statistical parity difference), the consumer can get confused when making comparisons. Moreover, it is 
difficult to see what is going on when there are several models (several bars). 

 
Figure 13.3. Bar graph of trust metrics for four different models.  

An alternative is the parallel coordinate plot, which is a line graph of the different metric dimensions 
next to each other, but normalized separately.26 An example is shown in Figure 13.4. The separate 
normalization per metric permits you to flip the direction of the axis so that, for example, higher is 
always better. (This flipping has been done for empirical robustness in the figure.) Since the lines can 

 

 
25Javier Antorán, Umang Bhatt, Tameem Adel, Adrian Weller, and José Miguel Hernández-Lobato. “Getting a CLUE: A Method 
for Explaining Uncertainty Estimates.” In: Proceedings of the International Conference on Learning Representations. May 2021.  
26Parallel coordinate plots have interesting mathematical properties. For more details, see: Rida E. Moustafa. “Parallel Coordi-
nate and Parallel Coordinate Density Plots.” In: WIREs Computational Statistics 3 (Mar./Apr. 2011), pp. 134–148.  
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overlap, there is less of a crowding effect from too many models being compared than with bar graphs. 
(If there are so so many models that even the parallel coordinate plot becomes unreadable, an alternative 
is the parallel coordinate density plot, which gives an indication of how many lines there are in every part 
of the plot using shading.) The main purpose of parallel coordinate plots is precisely to compare items 
along several categories with different metrics. Conditional parallel coordinate plots, an interactive version 
of parallel coordinate plots, allow you to expand upon submetrics within a higher-level metric.27 For 
example, if you create an aggregate metric that combines several adversarial robustness metrics 
including empirical robustness, CLEVER score, and others, an initial visualization will only contain the 
aggregate robustness score, but can be expanded to show the details of the other metrics it is composed 
of. Parallel coordinate plots can be wrapped around a polygon to yield a radar chart, an example of which 
is shown in Figure 13.5. 

 
Figure 13.4. Parallel coordinate plot of trust metrics for four different models.  

 

 
27Daniel Karl I. Weidele. “Conditional Parallel Coordinates.” In: Proceedings of the IEEE Visualization Conference. Vancouver, Can-
ada, Oct. 2019, pp. 221–225. 
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Figure 13.5. Radar chart of trust metrics for four different models.  

It is not easy to visualize metrics such as disparate impact ratio in which both small and large values 
indicate poor performance and intermediate values indicate good values. In these cases, and also to 
appeal to less technical consumers in the case of all metrics, simpler non-numerical visualizations 
involving color patches (e.g. green/yellow/red that indicate good/medium/poor performance), 
pictograms (e.g. smiley faces or stars), or Harvey balls (○/◔/◑/◕/●) may be used instead. See Figure 
13.6 for an example. However, these visualizations require thresholds to be set in advance on what 
constitutes a good, medium, or poor value. Eliciting these thresholds is part of value alignment, covered 
in Chapter 14. 

 
Model Accuracy Accuracy with 

Distribution 
Shift 

Disparate 
Impact 
Ratio 

Empirical 
Robust-

ness 

Faithful-
ness 

logistic regression      

neural network      

decision forest (boosting)      

decision forest (bagging)      

Figure 13.6. Simpler non-numeric visualization of trust metrics for four different models.  
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13.3.2 Communicating Uncertainty 
It is critical that you not only present the test result facts in a meaningful way, but also present the 
uncertainty around those test results to ensure that employees receiving and not receiving retention 
incentives, their managers, other JCN Corporation stakeholders and external regulators have full 
transparency about the proactive retention system.28 Van der Bles et al. give nine levels of 
communicating uncertainty:29 

1. explicit denial that uncertainty exists, 

2. no mention of uncertainty, 

3. informally mentioning the existence of uncertainty, 

4. a list of possibilities or scenarios, 

5. a qualifying verbal statement, 

6. a predefined categorization of uncertainty, 

7. a rounded number, range or an order-of-magnitude assessment, 

8. a summary of a distribution, and 

9. a full explicit probability distribution. 

You should not consider the first five of these options.  
Similar to the green/yellow/red categories described above for test values, predefined categorizations 

of uncertainty, such as ‘extremely uncertain,’ ‘uncertain,’ ‘certain,’ and ‘extremely certain’ may be 
useful for less technical consumers. In contrast to green/yellow/red, categories of uncertainty need not 
be elicited during value alignment because they are more universal concepts that are not related to the 
actual metrics or use case. Ranges express the possibility function (presented in Chapter 3), and can also 
be useful presentations for less technical consumers. 

The last two options are more appropriate for in-depth communication of uncertainty to consumers. 
Summaries of probability distributions, like the standard deviations given in Table 13.2, can also be shown 
in bar graphs using error bars. Box-and-whisker plots are like bar graphs, but show not only the standard 
deviation, but also outliers, quantiles and other summaries of uncertainty through a combination of 
marks, lines, and shaded areas. Violin plots are also like bar graphs, but show the full explicit probability 
distribution through their shape; the shape of the bar follows the pdf of the metric turned on its side. 
Examples of each are shown in Figure 13.7, Figure 13.8, and Figure 13.9. Parallel coordinate plots and 
radar charts can also contain error bars or shading to indicate summaries of probability distributions, 
but may be difficult to interpret when showing more than two or three models. 

 

 
28Umang Bhatt, Javier Antorán, Yunfeng Zhang, Q. Vera Liao, Prasanna Sattigeri, Riccardo Fogliato, Gabrielle Gauthier 
Melançon, Ranganath Krishnan, Jason Stanley, Omesh Tickoo, Lama Nachman, Rumi Chunara, Madhulika Srikumar, Adrian 
Weller, and Alice Xiang. “Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty.” In: 
Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society. Jul. 2021, pp. 401–413. 
29Anne Marthe van der Bles, Sander van der Linden, Alexandra L. J. Freeman, James Mitchell, Ana B. Galvao, Lisa Zaval, and 
David J. Spiegelhalter. “Communicating Uncertainty About Facts, Numbers and Science.” In: Royal Society Open Science 
6.181870 (Apr. 2019). 
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Figure 13.7. Bar graph with error bars of trust metrics for four different models.  

 
Figure 13.8. Box-and-whisker plot of trust metrics for four different models. 
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Figure 13.9. Violin plot of trust metrics for four different models.  

 

13.4 Maintaining Provenance 
In principle, factsheets are a good idea to achieve transparency, show conformity to regulations, and 
increase trustworthiness in JCN Corporation’s proactive retention system. But if consumers of 
factsheets think JCN Corporation is lying to them, is there anything you can do to convince them 
otherwise (assuming all the facts are impeccable)? More subtly, how can you show that facts haven’t 
been tampered with or altered after they were generated? Providing such assurance is hard because the 
facts are generated by many different people and processes throughout the development lifecycle, and 
just one weak link can spoil the entire factsheet. Provenance of the facts is needed. 

One solution is a version of the fact flow tool with an immutable ledger as its storage back-end. An 
immutable ledger is a system of record whose entries (ideally) cannot be changed, so all facts are posted 
with a time stamp in a way that is very difficult to tamper. It is append-only, so you can only write to it 
and not change or remove any information. A class of technologies that implements immutable ledgers 
is blockchain networks, which use a set of computers distributed across many owners and geographies to 
each provably validate and store a copy of the facts. The only way to beat this setup is by colluding with 
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more than half of the computer owners to change a fact that has been written, which is a difficult 
endeavor. Blockchains provide a form of distributed trust. 

There are two kinds of blockchains: (1) permissioned (also known as private) and (2) permissionless (also 
known as public). Permissioned blockchains restrict reading and writing of information and ownership 
of machines to only those who have signed up with credentials. Permissionless blockchains are open to 
anyone and can be accessed anonymously. Either may be an option for maintaining the provenance of 
facts while making the attrition prediction model more trustworthy. If all consumers are within the 
corporation or are among a fixed set of regulators, then a permissioned blockchain network will do the 
trick. If the general public or others external to JCN Corporation are the consumers of the factsheet, then 
a permissionless blockchain is the preferred solution. 

Posting facts to a blockchain solves the problem of maintaining the provenance of facts, but what if 
there is tampering in the creation of the facts themselves? For example, what if a data scientist discovers 
a small bug in the feature engineering code that shouldn’t affect model performance very much and 
fixes it. Retraining the entire model will go on through the night, but there’s a close-of-business deadline 
to submit facts. So the data scientist submits facts from a previously trained model. Shortcuts like this 
can also be prevented with blockchain technologies.30 Since the training of many machine learning 
models is done in a deterministic way by an iterative procedure (such as gradient descent), other 
computers in the blockchain network can endorse and verify that the training computation was actually 
run by locally rerunning small parts of the computation starting from checkpoints of the iterations 
posted by the data scientist. The details of how to make such a procedure tractable in terms of 
computation and communication costs is beyond the scope of the book. 

In your testing, you found that all of the models were lacking in fairness, so you sent them back to 
the data scientists to add better bias mitigation, which they did to your satisfaction. The various 
stakeholders are satisfied now as well, so you can go ahead and sign for the system’s conformity and 
push it on to the deployment stage of the lifecycle. Alongside the deployment efforts, you also release a 
factsheet for consumption by the managers within JCN Corporation who will be following through on 
the machine’s recommended retention actions. Remember that one of the promises of this new machine 
learning system was to make employment at JCN Corporation more equitable, but that will only happen 
if the managers adopt the system’s recommendations.31 Your efforts at factsheet-based transparency 
have built enough trust among the managers so they are willing to adopt the system, and JCN 
Corporation will have fairer decisions in retention actions. 
 

 

 
30Ravi Kiran Raman, Roman Vaculin, Michael Hind, Sekou L. Remy, Eleftheria K. Pissadaki, Nelson Kibichii Bore, Roozbeh 
Daneshvar, Biplav Srivastava, and Kush R. Varshney. “A Scalable Blockchain Approach for Trusted Computation and Verifiable 
Simulation in Multi-Party Collaborations.” In: Proceedings of the IEEE International Conference on Blockchain and Cryptocurrency. 
May 2019, Seoul, Korea, pp. 277–284. 
31There have been instances where a lack of transparency in machine learning algorithms designed to reduce inequity were 
adopted to a greater extent by privileged decision makers and adopted to a lesser extent by unprivileged decision makers, 
which ended up exacerbated inequity instead of tamping it down. See: Shunyung Zhang, Kannan Srinivasan, Param Vir Singh, 
and Nitin Mehta. “AI Can Help Address Inequity—If Companies Earn Users’ Trust.” In: Harvard Business Review (Sep. 2021). URL: 
https://hbr.org/2021/09/ai-can-help-address-inequity-if-companies-earn-users-trust. 
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13.5 Summary 
▪ Transparency is a key means for increasing the third attribute of trustworthiness in machine 

learning (openness and human interaction). 

▪ Fact flow is a mechanism for automatically collecting qualitative and quantitative facts about a 
development lifecycle. A factsheet is a collection of facts, appropriately rendered for a given 
consumer, that enables transparency and conformity assessment. 

▪ Model validation and risk management involve testing models across dimensions of trust, 
computing the uncertainties of the test results, capturing qualitative facts about the development 
lifecycle, and documenting and communicating these items transparently via factsheets. 

▪ Testing machine learning models is a unique endeavor different from other software testing 
because of the oracle problem: not knowing in advance what the behavior should be. 

▪ Visualization helps make test results and their uncertainties more accessible to various 
consumer personas. 

▪ Facts and factsheets become more trustworthy if their provenance can be maintained and 
verified. Immutable ledgers implemented using blockchain networks provide such capabilities. 


