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9  
Distribution Shift 

Wavetel is a leading (fictional) mobile telephony provider in India that expanded its operations to several 
East and Central African countries in recent years. One of its profit centers in the African markets is 
credit enabled by mobile money that it runs through partnerships with banks in each of the nations. The 
most straightforward application of mobile money is savings, first started in Kenya in 2007 under the 
name M-Pesa. With mobile money savings, customers can deposit, withdraw, and transfer funds 
electronically without a formal bank account, all through their mobile phones. (Remember that these 
transactions are one of the data sources that Unconditionally evaluated in Chapter 4.) More advanced 
financial services such as credit and insurance later emerged. In these advanced services, the bank 
takes on financial risk and can’t just hand out accounts without an application process and some amount 
of due diligence.  

Having seen how profitable mobile money-enabled credit can be, Wavetel strongly lobbied for it to 
be allowed in its home country of India and has just seen the regulations signed into law. Partnering with 
the (fictional) Bank of Bulandshahr, Wavetel is ready to deploy this new service under the name Phulo. 
Based on market research, Wavetel and the Bank of Bulandshahr expect Phulo to receive tens of 
thousands of applications per day when first launched. They have to be ready to approve or deny those 
applications in near real-time. To deal with this load, imagine that they have hired your data science 
team as consultants to create a machine learning model that makes the decisions.  

The task you face, approving and denying mobile phone-enabled loans for unbanked customers in 
India has never been done before. The Bank of Bulandshahr’s historical loan approval data will not be 
useful for making decisions on Phulo applicants. However, Wavetel has privacy-preserved data from 
mobile money-enabled credit systems in several East and Central African countries that it has the rights 
and consent to use in its India operations. Can you train the Phulo machine learning model using the 
African datasets? What could go wrong?  

If you’re not careful, there’s a lot that could go wrong. You could end up creating a really harmful and 
unreliable system, because of the big lie of machine learning: the core assumption that training data and 
testing data is independent and identically distributed (i.i.d.). This is almost never true in the real world, 
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where there tends to be some sort of difference in the probability distributions of the training data and 
the data encountered during the model’s deployment. This difference in distributions is known as 
distribution shift. A competent model that achieves high accuracy when tested through cross-validation 
might not maintain that competence in the real world. Too much epistemic uncertainty sinks the ship 
of even a highly risk-minimizing model. 

“All bets are off if there is a distribution shift when the model is deployed. (There's 
always a distribution shift.)” 

—Arvind Narayanan, computer scientist at Princeton University 

This chapter begins Part 4 of the book on reliability and dealing with epistemic uncertainty, which 
constitutes the second of four attributes of trustworthiness (the others are basic performance, human 
interaction, and aligned purpose) as well as the second of two attributes of safety (the first is minimizing 
risk and aleatoric uncertainty). As shown in Figure 9.1, you’re halfway home to creating trustworthy 
machine learning systems! 

 
Figure 9.1. Organization of the book. This fourth part focuses on the second attribute of trustworthiness, reliabil-
ity, which maps to machine learning models that are robust to epistemic uncertainty. Accessible caption. A flow 
diagram from left to right with six boxes: part 1: introduction and preliminaries; part 2: data; part 3: 
basic modeling; part 4: reliability; part 5: interaction; part 6: purpose. Part 4 is highlighted. Parts 3–4 
are labeled as attributes of safety. Parts 3–6 are labeled as attributes of trustworthiness. 

In this chapter, while working through the modeling phase of the machine learning lifecycle to create 
a safe and reliable Phulo model, you will: 

▪ examine how epistemic uncertainty leads to poor machine learning models, both with and 
without distribution shift, 

▪ judge which kind of distribution shift you have, and 

▪ mitigate the effects of distribution shift in your model. 

 

9.1 Epistemic Uncertainty in Machine Learning 
You have the mobile money-enabled credit approval/denial datasets from East and Central African 
countries and want to train a reliable Phulo model for India. You know that for safety, you must worry 
about minimizing epistemic uncertainty: the possibility of unexpected harms. Chapter 3 taught you how 
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to differentiate aleatoric uncertainty from epistemic uncertainty. Now’s the time to apply what you 
learned and figure out where epistemic uncertainty is rearing its head! 

First, in Figure 9.2, let’s expand on the picture of the different biases and validities from Figure 4.3 
to add a modeling step that takes you from the prepared data space to a prediction space where the 
output predictions of the model live. As you learned in Chapter 7, in modeling, you’re trying to get the 
classifier to generalize from the training data to the entire set of features by using an inductive bias, 
without overfitting or underfitting. Working backwards from the prediction space, the modeling process 
is the first place where epistemic uncertainty creeps in. Specifically, if you don’t have the information to 
select a good inductive bias and hypothesis space, but you could obtain it in principle, then you have 
epistemic uncertainty.1 Moreover, if you don’t have enough high-quality data to train the classifier even 
if you have the perfect hypothesis space, you have epistemic uncertainty. 

 
Figure 9.2. Different spaces and what can go wrong due to epistemic uncertainty throughout the machine learn-
ing pipeline. Accessible caption. A sequence of five spaces, each represented as a cloud. The construct 
space leads to the observed space via the measurement process. The observed space leads to the raw 
data space via the sampling process. The raw data space leads to the prepared data space via the data 
preparation process. The prepared data space leads to the prediction space via the modeling process. 
The measurement process contains social bias, which threatens construct validity. The sampling pro-
cess contains representation bias and temporal bias, which threatens external validity. The data prep-
aration process contains data preparation bias and data poisoning, which threaten internal validity. 
The modeling process contains underfitting/overfitting and poor inductive bias, which threaten gener-
alization. 

The epistemic uncertainty in the model has a few different names, including the Rashomon effect2 and 
underspecification.3 The main idea, illustrated in Figure 9.3, is that a lot of models perform similarly well 

 

 
1Eyke Hüllermeier and Willem Waegeman. “Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Con-
cepts and Methods.” In: Machine Learning 110.3 (Mar. 2021), pp. 457–506.   
2Aaron Fisher, Cynthia Rudin, and Francesca Dominici. “All Models Are Wrong, but Many Are Useful: Learning a Variable’s 
Importance by Studying an Entire Class of Prediction Models Simultaneosly.” In: Journal of Machine Learning Research 20.177 
(Dec. 2019). Rashomon is the title of a film in which different witnesses give different descriptions of the same event. 
3Alexander D’Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel, Christina Chen, Jonathan 
Deaton, Jacob Eisenstein, Matthew D. Hoffman, Farhad Hormozdiari, Neil Houlsby, Shaobo Hou, Ghassen Jerfel, Alan 
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in terms of aleatoric uncertainty and risk, but have different ways of generalizing because you have not 
minimized epistemic uncertainty. They all have the possibility of being competent and reliable models. 
They have a possibility value of 1. (Other models that do not perform well have a possibility value of 0 of 
being competent and reliable models.) However, many of these possible models are unreliable and they 
take shortcuts by generalizing from spurious characteristics in the data that people would not naturally 
think are relevant features to generalize from.4 They are not causal. Suppose one of the African mobile 
money-enabled credit datasets just happens to have a spurious feature like the application being 
submitted on a Tuesday that predicts the credit approval label very well. In that case, a machine learning 
training algorithm will not know any better and will use it as a shortcut to fit the model. And you know 
that taking shortcuts is no-no for you when building trustworthy machine learning systems, so you don’t 
want to let your models take shortcuts either. 

 
Figure 9.3. Among all the models you are considering, many of them can perform well in terms of accuracy and 
related measures; they are competent and constitute the Rashomon set. However, due to underspecification and 
the epistemic uncertainty that is present, many of the competent models are not safe and reliable. Accessible 
caption. A nested set diagram with reliable models being a small subset of competent models 
(Rashomon set), which are in turn a small subset of models in the hypothesis space.  

How can you know that a competent high-accuracy model is one of the reliable, safe ones and not 
one of the unreliable, unsafe ones? The main way is to stress test it by feeding in data points that are 
edge cases beyond the support of the training data distribution. More detail about how to test machine 
learning systems in this way is covered in Chapter 13.  

The main way to reduce epistemic uncertainty in the modeling step that goes from the prepared data 
space to the prediction space is data augmentation. If you can, you should collect more data from more 
environments and conditions, but that is probably not possible in your Phulo prediction task. 

 

 
Karthikesalingam, Mario Lucic, Yian Ma, Cory McLean, Diana Mincu, Akinori Mitani, Andrea Montanari, Zachary Nado, Vivek 
Nataragan, Christopher Nielson, Thomas F. Osborne, Rajiv Raman, Kim Ramasamy, Rory Sayres, Jessica Schrouff, Mertin Sen-
eviratne, Shannon Sequeira, Harini Suresh, Victor Veitch, Max Vladymyrov, Xuezhi Wang, Kellie Webster, Steve Yadlowsky, 
Taedong Yun, Xiaohua Zhai, and D. Sculley. “Underspecification Presents Challenges for Credibility in Modern Machine Learn-
ing.” arXiv:2011.03395, 2020.  
4Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge, and Felix A. 
Wichmann. “Shortcut Learning in Deep Neural Networks.” In: Nature Machine Intelligence 2.11 (Nov. 2020), pp. 665–673.  
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Alternatively, you can augment your training dataset by synthetically generating training data points, 
especially those that push beyond the margins of the data distribution you have. Data augmentation can 
be done for semi-structured data modalities by flipping, rotating, and otherwise transforming the data 
points you have. In structured data modalities, like have with Phulo, you can create new data points by 
changing categorical values and adding noise to continuous values. However, be careful that you do not 
introduce any new biases in the data augmentation process. 

 

9.2 Distribution Shift is a Form of Epistemic Uncertainty 
So far, you’ve considered the epistemic uncertainty in going from the prepared data space to the 
prediction space by modeling, but there’s epistemic uncertainty earlier in the pipeline too. This 
epistemic uncertainty comes from all of the biases you don’t know about or don’t understand very well 
when going from the construct space to the prepared data space. We’ll come back to some of them in 
Chapter 10 and Chapter 11 when you learn how to make machine learning systems fair and adversarially 
robust. But for now, when building the Phulo model in India using data from several East and Central 
African countries, your most obvious source of epistemic uncertainty is sampling. You have sampled 
your data from a different time (temporal bias) and population (representation bias) than what Phulo is 
going to be deployed on. You might also have epistemic uncertainty in measurement: it is possible that 
the way creditworthiness shows up in India is different than in East and Central African countries 
because of cultural differences (social bias). Putting everything together, the distributions of the training 
data and the deployed data are not identical: 𝑝𝑋,𝑌

(𝑡𝑟𝑎𝑖𝑛)(𝑥, 𝑦) ≠ 𝑝𝑋,𝑌
(𝑑𝑒𝑝𝑙𝑜𝑦)

(𝑥, 𝑦). (Remember that 𝑋 is features 
and 𝑌 is labels.) You have distribution shift.  

9.2.1 The Different Types of Distribution Shift 
In building out the Phulo model, you know that the way you’ve measured and sampled the data in 
historical African contexts is mismatched with the situation in which Phulo will be deployed: present-
day India. What are the different ways in which the training data distribution 𝑝𝑋,𝑌

(𝑡𝑟𝑎𝑖𝑛)(𝑥, 𝑦) can be different 
from the deployment data distribution 𝑝𝑋,𝑌

(𝑑𝑒𝑝𝑙𝑜𝑦)
(𝑥, 𝑦)? There are three main ways. 

1. Prior probability shift, also known as label shift, is when the label distributions are different but 
the features given the labels are the same: 𝑝𝑌

(𝑡𝑟𝑎𝑖𝑛)(𝑦) ≠ 𝑝𝑌
(𝑑𝑒𝑝𝑙𝑜𝑦)

(𝑦)5 and 𝑝𝑋∣𝑌
(𝑡𝑟𝑎𝑖𝑛)( 𝑥 ∣∣ 𝑦 ) =

𝑝𝑋∣𝑌
(𝑑𝑒𝑝𝑙𝑜𝑦)

( 𝑥 ∣∣ 𝑦 ). 

2. Covariate shift is the opposite, when the feature distributions are different but the labels given 
the features are the same: 𝑝𝑋

(𝑡𝑟𝑎𝑖𝑛)(𝑥) ≠ 𝑝𝑋
(𝑑𝑒𝑝𝑙𝑜𝑦)

(𝑥) and 𝑝𝑌∣𝑋
(𝑡𝑟𝑎𝑖𝑛)( 𝑦 ∣∣ 𝑥 ) = 𝑝𝑌∣𝑋

(𝑑𝑒𝑝𝑙𝑜𝑦)
( 𝑦 ∣∣ 𝑥 ).  

3. Concept drift is when the labels given the features are different but the features are the same: 
𝑝𝑌∣𝑋

(𝑡𝑟𝑎𝑖𝑛)( 𝑦 ∣∣ 𝑥 ) ≠ 𝑝𝑌∣𝑋
(𝑑𝑒𝑝𝑙𝑜𝑦)

( 𝑦 ∣∣ 𝑥 ) and 𝑝𝑋
(𝑡𝑟𝑎𝑖𝑛)(𝑥) = 𝑝𝑋

(𝑑𝑒𝑝𝑙𝑜𝑦)
(𝑥), or when the features given the labels 

are different but the labels are the same: 𝑝𝑋∣𝑌
(𝑡𝑟𝑎𝑖𝑛)( 𝑥 ∣∣ 𝑦 ) ≠ 𝑝𝑋∣𝑌

(𝑑𝑒𝑝𝑙𝑜𝑦)
( 𝑥 ∣∣ 𝑦 ) and 𝑝𝑌

(𝑡𝑟𝑎𝑖𝑛)(𝑦) =

𝑝𝑌
(𝑑𝑒𝑝𝑙𝑜𝑦)

(𝑦). 

All other distribution shifts do not have special names like these three types. The first two types of 
distribution shift come from sampling differences whereas the third type of distribution shift comes 

 

 
5You can also write this as 𝑝0

(𝑡𝑟𝑎𝑖𝑛)
≠ 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦).   
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from measurement differences. The three different types of distribution shift are summarized in Table 
9.1. 

Table 9.1. The three types of distribution shift. 

Type What 
Changes 

What is 
the Same 

Source Threatens Learning Problem 

prior probabil-
ity shift 

𝑌 𝑋 ∣ 𝑌 sampling external  
validity 

anticausal  
learning 

covariate shift 𝑋 𝑌 ∣ 𝑋 sampling external  
validity 

causal learning 

concept drift 𝑌 ∣ 𝑋 𝑋 measure-
ment 

construct  
validity 

causal learning 
𝑋 ∣ 𝑌 𝑌 anticausal  

learning 
 
Let’s go through an example of each type to see which one (or more than one) affects the Phulo 

situation. There will be prior probability shift if there are different proportions of creditworthy people in 
present-day India and historical African countries, maybe because of differences in the overall 
economy. There will be covariate shift if the distribution of features is different. For example, maybe 
people in India have more assets in gold than in East and Central African countries. There will be concept 
drift if the actual mechanism connecting the features and creditworthiness is different. For example, 
people in India who talk or SMS with many people may be more creditworthy while in East and Central 
Africa, people who talk or SMS with few people may be more creditworthy.  

One way to describe the different types of distribution shifts is through the context or environment. 
What does changing the environment in which the data was measured and sampled do to the features 
and label? And if you’re talking about doing, you’re talking about causality. If you treat the environment 
as a random variable 𝐸, then the different types of distribution shifts have the causal graphs shown in 
Figure 9.4.6 

 
Figure 9.4. Causal graph representations of the different types of distribution shift. Accessible caption. Graphs 
of prior probability shift (𝐸 → 𝑌 → 𝑋), covariate shift (𝐸 → 𝑋 → 𝑌), concept drift (𝐸 → 𝑌  𝑋), and con-
cept drift (𝐸 → 𝑋  𝑌). 

 

 
6Meelis Kull and Peter Flach. “Patterns of Dataset Shift.” In: Proceedings of the International Workshop on Learning over Multiple 
Contexts. Nancy, France, Sep. 2014.  
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These graphs illustrate a nuanced point. When you have prior probability shift, the label causes the 
feature and when you have covariate shift, the features cause the label. This is weird to think about, so 
let’s slow down and work through this concept. In the first case, 𝑌 → 𝑋, the label is known as an intrinsic 
label and the machine learning problem is known as anticausal learning. A prototypical example is a 
disease with a known pathogen like malaria that causes specific symptoms like chills, fatigue, and fever. 
The label of a patient having a disease is intrinsic because it is a basic property of the infected patient, 
which then causes the observed features. In the second case, 𝑋 → 𝑌, the label is known as an extrinsic 
label and the machine learning problem is known as causal learning. A prototypical example of this case 
is a syndrome, a collection of symptoms such as Asperger’s that isn’t tied to a pathogen. The label is just 
a label to describe the symptoms like compulsive behavior and poor coordination; it doesn’t cause the 
symptoms. The two different versions of concept drift correspond to anticausal and causal learning, 
respectively. Normally, in the practice of doing supervised machine learning, the distinction between 
anticausal and causal learning is just a curiosity, but it becomes important when figuring out what to do 
to mitigate the effect of distribution shift. It is not obvious which situation you’re in with the Phulo model, 
and you’ll have to really think about it. 

9.2.2 Detecting Distribution Shift 
Given that your training data is from East and Central African countries and your deployment data will 
come from India, you are aware that distribution shift probably exists in your modeling task. But how do 
you definitively detect it? There are two main ways: 

1. data distribution-based shift detection, and 

2. classifier performance-based shift detection, 

that are applicable at two different points of the machine learning modeling pipeline, show in Figure 
9.5.7 Data distribution-based shift detection is done on the training data before the model training. 
Classifier performance-based shift detection is done afterwards on the model. Data distribution-based 
shift detection, as its name implies, directly compares 𝑝𝑋,𝑌

(𝑡𝑟𝑎𝑖𝑛)(𝑥, 𝑦) and 𝑝𝑋,𝑌
(𝑑𝑒𝑝𝑙𝑜𝑦)

(𝑥, 𝑦) to see if they are 
similar or different. A common way is to compute their K-L divergence, which was introduced in Chapter 
3. If it is too high, then there is distribution shift. Classifier performance-based shift detection examines 
the Bayes risk, accuracy, 𝐹1-score, or other model performance measure. If it is much poorer than the 
performance during cross-validation, there is distribution shift. 

That is all well and good, but did you notice something about the two methods of distribution shift 
detection that make them unusable for your Phulo development task? They require the deployed 
distribution: both its features and labels. But you don’t have it! If you did, you would have used it to train 
the Phulo model. Shift detection methods are really meant for monitoring scenarios in which you keep 
getting data points to classify over time and you keep getting ground truth labels soon thereafter.  

 

 

 
7Jie Lu, Anjin Liu, Fan Dong, Feng Gu, João Gama, and Guangquan Zhang. “Learning Under Concept Drift: A Review.” In: IEEE 
Transactions on Knowledge and Data Engineering 31.12 (Dec. 2019), pp. 2346–2363. 
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Figure 9.5. Modeling pipeline for detecting and mitigating distribution shift. Accessible caption. A block dia-
gram with a training dataset as input to a pre-processing block labeled adaptation with a pre-pro-
cessed dataset as output. The pre-processed dataset is input to a model training block labeled robust-
ness with a model as output. A data distribution-based shift detection block is applied to the training 
dataset. A classifier performance-based shift detection block is applied to the model. 

If you’ve started to collect unlabeled feature data from India, you can do unsupervised data 
distribution-based shift detection by comparing the India feature distribution to the Africa feature 
distributions. But you kind of already know that they’ll be different, and this unsupervised approach will 
not permit you to determine which type of distribution shift you have. Thus, in a Phulo-like scenario, 
you just have to assume the existence and type of distribution shift based on your knowledge of the 
problem. (Remember our phrase from Chapter 8: “those who can’t do, assume.”) 

9.2.3 Mitigating Distribution Shift 
There are two different scenarios when trying to overcome distribution shift to create a safe and 
trustworthy machine learning model: (1) you have unlabeled feature data 𝑋(𝑑𝑒𝑝𝑙𝑜𝑦) from the deployment 
distribution, which will let you adapt your model to the deployment environment, and (2) you have 
absolutely no data from the deployment distribution, so you must make the model robust to any 
deployment distribution you might end up encountering.  

“Machine learning systems need to robustly model the range of situations that occur 
in the real-world.” 

—Drago Anguelov, computer scientist at Waymo 

The two approaches take place in different parts of the modeling pipeline shown in Figure 9.5. 
Adaptation is done on the training data as a pre-processing step, whereas robustness is introduced as 
part of the model training process. The two kinds of mitigation are summarized in Table 9.2. 

Table 9.2. The two types of distribution shift mitigation. 

Type Where in the 
Pipeline 

Known Deployment 
Environment 

Approach for Prior Proba-
bility and Covariate Shifts 

Approach for 
Concept Drift 

adaptation pre- 
processing 

yes sample weights  obtain labels 

robustness model training no min-max formulation invariant risk 
minimization 
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The next sections work through adaptation and robustness for the different types of distribution 

shift. Mitigating prior probability shift and covariate shift is easier than mitigating concept drift because 
the relationship between the features and labels does not change in the first two types. Thus, the 
classifier you learned on the historical African training data continues to capture that relationship even 
on India deployment data; it just needs a little bit of tuning.  

 

9.3 Adaptation 
The first mitigation approach, adaptation, is done as a pre-processing of the training data from East and 
Central African countries using information available in unlabeled feature data 𝑋(𝑑𝑒𝑝𝑙𝑜𝑦) from India. To 
perform adaptation, you must know that India is where you’ll be deploying the model and you must be 
able to gather some features. 

9.3.1 Prior Probability Shift 
Since prior probability shift arises from sampling bias, the relationship between features and labels, and 
thus the ROC, does not change. Adapting is simply a matter of adjusting the classifier threshold or 
operating point based on the confusion matrix, which are all concepts you learned in Chapter 6. A 
straightforward and effective way to adapt to prior probability shift is a weighting scheme. The algorithm 
is as follows.8 

1. Train a classifier on one random split of the training data to get �̂�(𝑡𝑟𝑎𝑖𝑛)(𝑥) and compute the clas-
sifier’s confusion matrix on another random split of the training data: 
 𝐶 = [

𝑝𝑇𝑃 𝑝𝐹𝑃

𝑝𝐹𝑁 𝑝𝑇𝑁
]. 

2. Run the unlabeled features of the deployment data through the classifier: �̂�(𝑡𝑟𝑎𝑖𝑛)(𝑋(𝑑𝑒𝑝𝑙𝑜𝑦)) and 
compute the probabilities of positives and negatives in the deployment data as a vector: 

𝑎 =  [
𝑃(�̂�(𝑡𝑟𝑎𝑖𝑛)(𝑋(𝑑𝑒𝑝𝑙𝑜𝑦)) = 1)

𝑃(�̂�(𝑡𝑟𝑎𝑖𝑛)(𝑋(𝑑𝑒𝑝𝑙𝑜𝑦)) = 0)
]. 

3. Compute weights 𝑤 = 𝐶−1𝑎. This is a vector of length two. 

4. Apply the weights to the training data points in the first random split and retrain the classifier. 
The first of the two weights multiplies the loss function of the training data points with label 1. 
The second of the two weights multiplies the loss function of the training data points with label 
0.  

The retrained classifier is what you want to use when you deploy Phulo in India under the assumption 
of prior probability shift. 

 

 
8Zachary C. Lipton, Yu-Xiang Wang, and Alexander J. Smola. “Detecting and Correcting for Label Shift with Black Box Predic-
tors.” In: Proceedings of the International Conference on Machine Learning. Stockholm, Sweden, Jul. 2018, pp. 3122–3130. 
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9.3.2 Covariate Shift 
Just like adapting to prior probability shift, adapting to covariate shift uses a weighting technique called 
importance weighting to overcome the sampling bias. In an empirical risk minimization or structural risk 
minimization setup, a weight 𝑤𝑗 multiplies the loss function for data point (𝑥𝑗 , 𝑦𝑗):  

�̂�(∙) = arg min
𝑓∈ℱ

1

𝑛
∑ 𝑤𝑗𝐿 (𝑦𝑗 , 𝑓(𝑥𝑗)) .

𝑛

𝑗=1

 

Equation 9.1 

(Compare this to Equation 7.3, which is the same thing, but without the weights.) The importance weight 
is the ratio of the probability density of the features 𝑥𝑗 under the deployment distribution and the 
training distribution: 𝑤𝑗 = 𝑝𝑋

(𝑑𝑒𝑝𝑙𝑜𝑦)
(𝑥𝑗)/𝑝𝑋

(𝑡𝑟𝑎𝑖𝑛)
(𝑥𝑗).9 The weighting scheme tries to make the African 

features look more like the Indian features by emphasizing those that are less likely in East and Central 
African countries but more likely in India.  

How do you compute the weight from the training and deployment datasets? You could first try to 
estimate the two pdfs separately and then evaluate them at each training data point and plug them into 
the ratio. But that usually doesn’t work well. The better way to go is to directly estimate the weight. 

“When solving a problem of interest, do not solve a more general problem as an 
intermediate step.” 

—Vladimir Vapnik, computer scientist at AT&T Bell Labs 

The most straightforward technique is similar to computing propensity scores in Chapter 8. You learn a 
classifier with a calibrated continuous score 𝑠(𝑥) such as logistic regression or any other classifier from 
Chapter 7. The dataset to train this classifier is a concatenation of the deployment and training datasets. 
The labels are 1 for the data points that come from the deployment dataset and the labels are 0 for the 
data points that come from the training dataset. The features are the features. Once you have the 
continuous output of the classifier as a score, the importance weight is:10  

𝑤𝑗 =
𝑛(𝑡𝑟𝑎𝑖𝑛)𝑠(𝑥𝑗)

𝑛(𝑑𝑒𝑝𝑙𝑜𝑦) (1 − 𝑠(𝑥𝑗))
, 

Equation 9.2 

where 𝑛(𝑡𝑟𝑎𝑖𝑛) and 𝑛(𝑑𝑒𝑝𝑙𝑜𝑦) are the number of data points in the training and deployment datasets, 
respectively. 

 

 
9Hidetoshi Shimodaira. “Improving Predictive Inference Under Covariate Shift by Weighting the Log-Likelihood Function.” In: 
Journal of Statistical Planning and Inference 90.2 (Oct. 2000), pp. 227–244.  
10Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density Ratio Estimation in Machine Learning. Cambridge, England, 
UK: Cambridge University Press, 2012.  
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9.3.3 Concept Drift 
Adapting to prior probability shift and covariate shift can be done without labels from the deployment 
data because they come from sampling bias in which the relationship between features and labels does 
not change. However, the same thing is not possible under concept drift because it comes from 
measurement bias: the relationship between features and labels changing from African countries to 
India. To adapt to concept drift, you must be very judicious in selecting unlabeled deployment data 
points to (expensively) get labels for. It could mean having a human expert in India look at some 
applications and provide judgement on whether to approve or deny the mobile money-enabled credit. 
There are various criteria for choosing points for such annotation. Once you’ve gotten the annotations, 
retrain the classifier on the newly labeled data from India (possibly with large weight) along with the 
older training data from East and Central African countries (possibly with small weight). 
 

9.4 Robustness 
Often, you do not have any data from the deployment environment, so adaptation is out of the question. 
You might not even know what the deployment environment is going to be. It might not even end up 
being India for all that you know. Robustness does not require you to have any deployment data. It 
modifies the learning objective and procedure. 

9.4.1 Prior Probability Shift 
If you don’t have any data from the deployment environment (India), you want to make your model 
robust to whatever prior probabilities of creditworthiness there could be. Consider a situation in which 
the deployment prior probabilities in India are actually 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦) and 𝑝1
(𝑑𝑒𝑝𝑙𝑜𝑦)

= (1 − 𝑝0
(𝑑𝑒𝑝𝑙𝑜𝑦)

), but you 
guess that they are 𝑝0

(𝑡𝑟𝑎𝑖𝑛) and (1 − 𝑝0
(𝑡𝑟𝑎𝑖𝑛)

), maybe by looking at the prior probabilities in the different 
African countries. Your guess is probably a little bit off. If you use the decision function corresponding 
to your guess with the likelihood ratio test threshold 𝑝0

(𝑡𝑟𝑎𝑖𝑛)
𝑐10

(1−𝑝0
(𝑡𝑟𝑎𝑖𝑛)

)𝑐01

 (recall this was the form of the optimal 
threshold stated in Chapter 6), it has the following mismatched Bayes risk performance:11 

𝑅(𝑝0
(𝑑𝑒𝑝𝑙𝑜𝑦)

, 𝑝0
(𝑡𝑟𝑎𝑖𝑛)

) = 𝑐10𝑝0
(𝑑𝑒𝑝𝑙𝑜𝑦)

𝑝𝐹𝑃(𝑝0
(𝑡𝑟𝑎𝑖𝑛)

) + 𝑐01𝑝1
(𝑑𝑒𝑝𝑙𝑜𝑦)

𝑝𝐹𝑁(𝑝0
(𝑡𝑟𝑎𝑖𝑛)

). 

Equation 9.3 

You lose out on performance. Your epistemic uncertainty in knowing the right prior probabilities has 
hurt the Bayes risk.  

To be robust to the uncertain prior probabilities in present-day India, choose a value for 𝑝0
(𝑡𝑟𝑎𝑖𝑛) so 

that the worst-case performance is as good as possible. Known as a min-max formulation, the problem 
is to find a min-max optimal prior probability point that you’re going to use when you deploy the Phulo 
model. Specifically, you want: 

 

 
11In Equation 6.10, 𝑅 = 𝑐10𝑝0𝑝𝐹𝑃 + 𝑐01𝑝1𝑝𝐹𝑁, the dependence of 𝑝FP and 𝑝FN on 𝑝0 was not explicitly noted, but this dependence 
exists through the Bayes optimal threshold. 
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arg min
𝑝0

(𝑡𝑟𝑎𝑖𝑛)
max

𝑝0
(𝑑𝑒𝑝𝑙𝑜𝑦)

𝑅 (𝑝0
(𝑑𝑒𝑝𝑙𝑜𝑦)

, 𝑝0
(𝑡𝑟𝑎𝑖𝑛)

). 

Equation 9.4  

Normally in the book, we stop at the posing of the formulation. In this instance, however, since the 
min-max optimal solution has nice geometric properties, let’s carry on. The mismatched Bayes risk 
function 𝑅(𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦)
, 𝑝0

(𝑡𝑟𝑎𝑖𝑛)
) is a linear function of 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦) for a fixed value of 𝑝0
(𝑡𝑟𝑎𝑖𝑛). When 𝑝0

(𝑡𝑟𝑎𝑖𝑛)
=

𝑝0
(𝑑𝑒𝑝𝑙𝑜𝑦), the Bayes optimal threshold is recovered and 𝑅(𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦)
, 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦)
) is the optimal Bayes risk 𝑅 

defined in Chapter 6. It is a concave function that is zero at the endpoints of the interval [0,1].12 The linear 
mismatched Bayes risk function is tangent to the optimal Bayes risk function at 𝑝0

(𝑡𝑟𝑎𝑖𝑛)
= 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦) and 
greater than it everywhere else.13 This relationship is shown in Figure 9.6.  

 
Figure 9.6. An example mismatched (dashed line) and matched Bayes risk function (solid curve). Accessible 
caption. A plot with 𝑅(𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦)
, 𝑝0

(𝑡𝑟𝑎𝑖𝑛)
) on the vertical axis and 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦) on the horizontal axis. The 
matched Bayes risk is 0 at 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦)
= 0, increases to a peak in the middle and decreases back to 0 at 

𝑝0
(𝑑𝑒𝑝𝑙𝑜𝑦)

= 1. Its shape is concave. The mismatched Bayes risk is a line tangent to the matched Bayes 
risk at the point 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦)
= 𝑝0

(𝑡𝑟𝑎𝑖𝑛), which in this example is at a point greater than the peak of the 
matched Bayes risk. There’s a large gap between the matched and mismatched Bayes risk, especially 
towards 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦)
= 0. 

The solution is the prior probability value at which the matched Bayes risk function has zero slope. 
It turns out that the correct answer is the place where the mismatched Bayes risk tangent line is flat—at 
the top of the hump as shown in Figure 9.7. Once you have it, use it in the threshold of the Phulo decision 
function to deal with prior probability shift. 

 

 
12This is true under the ongoing assumption that the costs of correct classifications 𝑐00 = 0 and 𝑐11 = 0. 
13Kush R. Varshney. “Bayes Risk Error is a Bregman Divergence.” In: IEEE Transactions on Signal Processing 59.9 (Sep. 2011), pp. 
4470–4472.  
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Figure 9.7. The most robust prior probability to use in the decision function place is where the matched Bayes risk 
function is maximum. Accessible caption. A plot with 𝑅(𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦)
, 𝑝0

(𝑡𝑟𝑎𝑖𝑛)
) on the vertical axis and 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦) 
on the horizontal axis. The matched Bayes risk is 0 at 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦)
= 0, increases to a peak in the middle 

and decreases back to 0 at 𝑝0
(𝑑𝑒𝑝𝑙𝑜𝑦)

= 1. Its shape is concave. The mismatched Bayes risk is a horizontal 
line tangent to the matched Bayes risk at the optimal point 𝑝0

(𝑑𝑒𝑝𝑙𝑜𝑦)
= 𝑝0

(𝑡𝑟𝑎𝑖𝑛), which is at the peak of the 
matched Bayes risk. The maximum gap between the matched and mismatched Bayes risk is as small 
as can be. 

9.4.2 Covariate Shift 
If you are in the covariate shift setting instead of being in the prior probability shift setting, you have to 
do something a little differently to make your model robust to the deployment environment. Here too, 
robustness means setting up a min-max optimization problem so that you do the best that you can in 
preventing the worst-case behavior. Starting from the importance weight formulation of Equation 9.1, 
put in an extra maximum loss over the weights:14 

�̂�(∙) = arg min
𝑓∈ℱ

max
𝑤

1

𝑛
∑ 𝑤𝑗𝐿 (𝑦𝑗 , 𝑓(𝑥𝑗))

𝑛

𝑗=1

, 

Equation 9.5 

where 𝑤 is the set of possible weights that are non-negative and sum to one. The classifier that optimizes 
the objective in Equation 9.5 is the robust classifier you’ll want to use for the Phulo model to deal with 
covariate shift.  

9.4.3 Concept Drift and Other Distribution Shifts 
Just like adapting to concept drift is harder than adapting to prior probability shift and covariate shift 
because it stems from measurement bias instead of sampling bias, robustness to concept drift is also 
harder. It is one of the most vexing problems in machine learning. You can’t really pose a min-max 

 

 
14Junfeng Wen, Chun-Nam Yu, and Russell Greiner. “Robust Learning under Uncertain Test Distributions: Relating Covariate 
Shift to Model Misspecification.” In: Proceedings of the International Conference on Machine Learning. Beijing, China, Jun. 2014, pp. 
631–639. Weihua Hu, Gang Niu, Issei Sato, and Masashi Sugiyama. “Does Distributionally Robust Supervised Learning Give 
Robust Classifiers?” In: Proceedings of the International Conference on Machine Learning. Stockholm, Sweden, Jul. 2018, pp. 2029–
2037. 
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formulation because the training data from East and Central African countries is not indicating the right 
relationship between the features and label in India. A model robust to concept drift must extrapolate 
outside of what the training data can tell you. And that is too open-ended of a task to do well unless you 
make some more assumptions.  

One reasonable assumption you can make is that the set of features split into two types: (1) causal or 
stable features, and (2) spurious features. You don’t know which ones are which beforehand. The causal 
features capture the intrinsic parts of the relationship between features and labels, and are the same set 
of features in different environments. In other words, this set of features is invariant across the 
environments. Spurious features might be predictive in one environment or a few environments, but 
not universally so across environments. You want the Phulo model to rely on the causal features whose 
predictive relationship with labels holds across Tanzania, Rwanda, Congo, and all the other countries 
that Wavetel has data from and ignore the spurious features. By doing so, the hope is that the model will 
not only perform well for the countries in the training set, but also any new country or environment that 
it encounters, such as India. It will be robust to the environment in which it is deployed. 

“ML enables an increased emphasis on stability and robustness.” 

—Susan Athey, economist at Stanford University 

Invariant risk minimization is a variation on the standard risk minimization formulation of machine 
learning that helps the model focus on the causal features and avoid the spurious features when there 
is data from more than one environment available for training. The formulation is:15 

�̂�(∙) = arg min
𝑓∈ℱ

∑
1

𝑛𝑒

∑ 𝐿 (𝑦𝑗
(𝑒)

, 𝑓(𝑥𝑗
(𝑒)

)) .

𝑛𝑒

𝑗=1𝑒∈ℰ

 

such that 𝑓 ∈ arg min
𝑔∈ℱ

1

𝑛𝑒

∑ 𝐿 (𝑦𝑗
(𝑒)

, 𝑔(𝑥𝑗
(𝑒)

))  for all 𝑒 ∈ ℰ.

𝑛𝑒

𝑗=1

 

Equation 9.6 

Let’s break this equation down bit by bit to understand it more. First, the set ℰ is the set of all 
environments or countries from which we have training data (Tanzania, Rwanda, Congo, etc.) and each 
country is indexed by 𝑒. There are 𝑛𝑒 training samples {(𝑥1

(𝑒)
, 𝑦1

(𝑒)
), … , (𝑥𝑛𝑒

(𝑒)
, 𝑦𝑛𝑒

(𝑒)
)} from each country. The 

inner summation in the top line is the regular risk expression that we’ve seen before in Chapter 7. The 
outer summation in the top line is just adding up all the risks for all the environments, so that the 
classifier minimizes the total risk. The interesting part is the constraint in the second line. It is saying 
that the classifier that is the solution of the top line must simultaneously minimize the risk for each of 
the environments or countries separately as well. As you know from earlier in the chapter, there can be 

 

 
15Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. “Invariant Risk Minimization.” arXiv:1907.02893, 
2020. 
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many different classifiers that minimize the loss—they are the Rashomon set—and that is why the second 
line has the ‘element of’ symbol ∈. The invariant risk minimization formulation adds extra specification 
to reduce the epistemic uncertainty and allow for better out-of-distribution generalization. 

You might ask yourself whether the constraint in the second line does anything useful. Shouldn’t the 
first line alone give you the same solution? This is a question that machine learning researchers are 
currently struggling with.16 They find that usually, the standard risk minimization formulation of 
machine learning from Chapter 7 is the most robust to general distribution shifts, without the extra 
invariant risk minimization constraints. However, when the problem is an anticausal learning problem 
and the feature distributions across environments have similar support, invariant risk minimization 
may outperform standard machine learning (remember from earlier in the chapter that the label causes 
the features in anticausal learning).17 

In a mobile money-enabled credit approval setting like you have with Phulo, it is not entirely clear 
whether the problem is causal learning or anticausal learning: do the features cause the label or do the 
labels cause the features? In a traditional credit scoring problem, you are probably in the causal setting 
because there are strict parameters on features like salary and assets that cause a person to be viewed 
by a bank as creditworthy or not. In the mobile money and unbanked setting, you could also imagine the 
problem to be anticausal if you think that a person is inherently creditworthy or not, and the features 
you’re able to collect from their mobile phone usage are a result of the creditworthiness. As you’re 
developing the Phulo model, you should give invariant risk minimization a shot because you have 
datasets from several countries, require robustness to concept drift and generalization to new countries, 
and likely have an anticausal learning problem. You and your data science team can be happy that you’ve 
given Wavetel and the Bank of Bulandshahr a model they can rely on during the launch of Phulo. 

 

9.5 Summary 
▪ Machine learning models should not take shortcuts if they are to be reliable. You must minimize 

epistemic uncertainty in modeling, data preparation, sampling, and measurement. 

▪ Data augmentation is a way to reduce epistemic uncertainty in modeling. 

▪ Distribution shift—the mismatch between the probability distribution of the training data and the 
data you will see during deployment—has three special cases: prior probability shift, covariate 
shift, and concept drift. Often, you can’t detect distribution shift. You just have to assume it. 

▪ Prior probability shift and covariate shift are easier to overcome than concept drift because they 
arise from sampling bias rather than measurement bias. 

▪ A pre-processing strategy for mitigating prior probability shift and covariate shift is adaptation, 
in which sample weights multiply the training loss during the model learning process. Finding 

 

 
16Ishaan Gulrajani and David Lopez-Paz. “In Search of Lost Domain Generalization.” In: Proceedings of the International Confer-
ence on Learning Representations. May 2021. Pritish Kamath, Akilesh Tangella, Danica J. Sutherland, and Nathan Srebro. “Does 
Invariant Risk Minimization Capture Invariance?” arXiv:2010.01134, 2021. 
17Kartik Ahuja, Jun Wang, Karthikeyan Shanmugam, Kush R. Varshney, and Amit Dhurandhar. “Empirical or Invariant Risk 
Minimization? A Sample Complexity Perspective.” In: Proceedings of the International Conference on Learning Representations. May 
2021.  
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the weights requires a fixed target deployment distribution and unlabeled data from it. 

▪ A strategy for mitigating prior probability and covariate shift during model training is min-max 
robustness, which changes the learning formulation to try to do the best in the worst-case 
environment that could be encountered during deployment. 

▪ Adapting to concept drift requires the acquisition of some labeled data from the deployment 
environment. 

▪ Invariant risk minimization is a strategy for mitigating concept drift and achieving distributional 
robustness that focuses the model’s efforts on causal features and ignores spurious features. It 
may work well in anticausal learning scenarios in which the label causes the features. 

 


