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6  
Detection Theory 

Let’s continue from Chapter 3, where you are the data scientist building the loan approval model for the 
(fictional) peer-to-peer lender ThriveGuild. As then, you are in the first stage of the machine learning 
lifecycle, working with the problem owner to specify the goals and indicators of the system. You have 
already clarified that safety is important, and that it is composed of two parts: basic performance 
(minimizing aleatoric uncertainty) and reliability (minimizing epistemic uncertainty). Now you want to 
go into greater depth in the problem specification for the first part: basic performance. (Reliability 
comes in Part 4 of the book.) 

What are the different quantitative metrics you could use in translating the problem-specific goals 
(e.g. expected profit for the peer-to-peer lender) to machine learning quantities? Once you’ve reached 
the modeling stage of the lifecycle, how would you know you have a good model? Do you have any special 
considerations when producing a model for risk assessment rather than simply offering an 
approve/deny output? 

Machine learning models are decision functions: based on the borrower’s features, they decide a 
response that may lead to an autonomous approval/denial action or be used to support the decision 
making of the loan officer. The use of decision functions is known as statistical discrimination because 
we are distinguishing or differentiating one class label from the other. You should contrast the use of the 
term ‘discrimination’ here with unwanted discrimination that leads to systematic advantages to certain 
groups in the context of algorithmic fairness in Chapter 10. Discrimination here is simply telling the 
difference between things. Your favorite wine snob talking about their discriminative palate is a distinct 
concept from racial discrimination. 

This chapter begins Part 3 of the book on basic modeling (see Figure 6.1 to remind yourself of the lay 
of the land) and uses detection theory, the study of optimal decision making in the case of categorical 
output responses,1 to answer the questions above that you are struggling with.  

 

 
1Estimation theory is the study of optimal decision making in the case of continuous output responses. 
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Figure 6.1. Organization of the book. This third part focuses on the first attribute of trustworthiness, competence 
and credibility, which maps to machine learning models that are well-performing and accurate. Accessible cap-
tion. A flow diagram from left to right with six boxes: part 1: introduction and preliminaries; part 2: 
data; part 3: basic modeling; part 4: reliability; part 5: interaction; part 6: purpose. Part 3 is high-
lighted. Parts 3–4 are labeled as attributes of safety. Parts 3–6 are labeled as attributes of trustworthi-
ness. 

Specifically, this chapter focuses on: 

▪ selecting metrics to quantify the basic performance of your decision function (including ones 
that summarize performance across operating conditions), 

▪ testing whether your decision function is as good as it could ever be, and 

▪ differentiating performance in risk assessment problems from performance in binary decision 
problems. 

 

6.1 Selecting Decision Function Metrics 
You, the ThriveGuild data scientist, are faced with the binary detection problem, also known as the binary 
hypothesis testing problem, of predicting which loan applicants will default, and thereby which 
applications to deny.2 Let 𝑌 be the loan approval decision with label 𝑦 = 0 corresponding to deny and 
label 𝑦 = 1 corresponding to approve. Feature vector 𝑋 contains employment status, income, and other 
attributes. The value 𝑦 = 0 is called a negative and the value 𝑦 = 1 is called a positive. The random 
variables for the features and label are governed by the pmfs given the special name likelihood functions 
𝑝𝑋∣𝑌( 𝑥 ∣∣ 𝑦 = 0 ) and 𝑝𝑋∣𝑌( 𝑥 ∣∣ 𝑦 = 1 ), as well as by prior probabilities 𝑝0 = 𝑃(𝑌 = 0) and 𝑝1 = 𝑃(𝑌 = 1) = 1 −

𝑝0. The basic task is to find a decision function 𝑦̂: 𝒳 → {0,1} that predicts a label from the features.3  

6.1.1 Quantifying the Possible Events 
There are four possible events in the binary detection problem:  

1. the decision function predicts 0 and the true label is 0, 

2. the decision function predicts 0 and the true label is 1, 

 

 
2For ease of explanation in this chapter and in later parts of the book, we mostly stick with the case of two label values and do 
not delve much into the case with more than two label values.  
3This is also the basic task of supervised machine learning. In supervised learning, the decision function is based on data sam-
ples from (𝑋, 𝑌) rather than on the distributions; supervised learning is coming up soon enough in the next chapter, Chapter 7.  
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3. the decision function predicts 1 and the true label is 1, and 

4. the decision function predicts 1 and the true label is 0.  

These are known as true negatives (TN), false negatives (FN), true positives (TP), and false positives (FP), 
respectively. A true negative is denying an applicant who should be denied according to some ground 
truth, a false negative is denying an applicant who should be approved, a true positive is approving an 
applicant who should be approved, and a false positive is approving an applicant who should be denied. 
Let’s organize these events in a table known as the confusion matrix: 
 

 𝑌 =  1 𝑌 =  0 

𝑦̂(𝑋) = 1 TP FP 

𝑦̂(𝑋) = 0 FN TN 

Equation 6.1 

The probabilities of these events are: 
 

𝑝TP = 𝑃( 𝑦̂(𝑋) = 1 ∣∣ 𝑌 = 1 ) 𝑝FP = 𝑃( 𝑦̂(𝑋) = 1 ∣∣ 𝑌 = 0 ) 

𝑝FN = 𝑃( 𝑦̂(𝑋) = 0 ∣∣ 𝑌 = 1 ) 𝑝TN = 𝑃( 𝑦̂(𝑋) = 0 ∣∣ 𝑌 = 0 ) 

Equation 6.2 

These conditional probabilities are nothing more than a direct implementation of the definitions of the 
events. The probability 𝑝TN is known as the true negative rate as well as the specificity and the selectivity. 
The probability 𝑝FN is known as the false negative rate as well as the probability of missed detection and 
the miss rate. The probability 𝑝TP is known as the true positive rate as well as the probability of detection, 
the recall, the sensitivity, and the power. The probability 𝑝FP is known as the false positive rate as well as 
the probability of false alarm and the fall-out. The probabilities can be organized in a slightly different 
table as well: 
 

𝑃( 𝑦̂(𝑋) ∣∣ 𝑌 ) 𝑌 =  1 𝑌 =  0 

𝑦̂(𝑋) = 1 𝑝TP 𝑝FP 

𝑦̂(𝑋) = 0 𝑝FN 𝑝TN 

Equation 6.3 
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These probabilities give you some quantities by which to understand the performance of the decision 
function 𝑦̂. Selecting one over the other involves thinking about the events themselves and how they 
relate to the real-world problem. A false positive, approving an applicant who should be denied, means 
that a ThriveGuild lender has to bear the cost of a default, so it should be kept small. A false negative, 
denying an applicant who should be approved, is a lost opportunity for ThriveGuild to make a profit 
through the interest they charge. 

The events above are conditioned on the true label. Conditioning on the predicted label also yields 
events and probabilities of interest in characterizing performance: 
 

𝑃( 𝑌 ∣∣ 𝑦̂(𝑋) ) 𝑌 =  1 𝑌 =  0 

𝑦̂(𝑋) = 1 𝑝PPV 𝑝FDR 

𝑦̂(𝑋) = 0 𝑝FOR 𝑝NPV 

Equation 6.4 

These conditional probabilities are reversed from Equation 6.2. The probability 𝑝𝑁𝑃𝑉 is known as the 
negative predictive value. The probability 𝑝𝐹𝑂𝑅 is known as the false omission rate. The probability 𝑝𝑃𝑃𝑉 is 
known as the positive predictive value as well as the precision. The probability 𝑝𝐹𝐷𝑅 is known as the false 
discovery rate. If you care about the quality of the decision function, focus on the first set (𝑝TN, 𝑝FN, 𝑝TP, 
𝑝FP). If you care about the quality of the predictions, focus on the second set (𝑝NPV, 𝑝FOR, 𝑝PPV, 𝑝FDR). 

When you need to numerically compute these probabilities, apply the decision function to several 
i.i.d. samples of (𝑋, 𝑌) and denote the number of TN, FN, TP, and FP events as 𝑛TN, 𝑛FN, 𝑛TP, and 𝑛FP, 
respectively.  Then use the following estimates of the probabilities: 

 

𝑝TP ≈
𝑛TP

𝑛TP + 𝑛FN
 𝑝FP ≈

𝑛FP

𝑛FP + 𝑛TN
 

𝑝FN ≈
𝑛FN

𝑛FN + 𝑛TP
  𝑝TN ≈

𝑛TN

𝑛TN + 𝑛FP
 

 

𝑝PPV ≈
𝑛TP

𝑛TP + 𝑛FP
 𝑝FDR ≈

𝑛FP

𝑛FP + 𝑛TP
 

𝑝FOR ≈
𝑛FN

𝑛FN + 𝑛TN
 𝑝NPV ≈

𝑛TN

𝑛TN + 𝑛FN
 

Equation 6.5 

As an example, let’s say that ThriveGuild makes the following number of decisions: 𝑛TN = 1234, 𝑛FN =

73, 𝑛TP = 843, and 𝑛FP = 217. You can estimate the various performance probabilities by plugging these 
numbers into the respective expressions above. The results are 𝑝TN ≈ 0.85, 𝑝FN ≈ 0.08, 𝑝TP ≈ 0.92, 𝑝FP ≈
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0.15, 𝑝NPV ≈ 0.94, 𝑝FOR ≈ 0.06, 𝑝PPV ≈ 0.80, and 𝑝FDR ≈ 0.20. These are all reasonably good values, but must 
ultimately be judged according to the ThriveGuild problem owner's goals and objectives. 

6.1.2 Summary Performance Metrics 
Collectively, false negatives and false positives are errors. The probability of error, also known as the error 
rate, is the sum of the false negative rate and false positive rate weighted by the prior probabilities: 

𝑝E = 𝑝0𝑝FP + 𝑝1𝑝FN. 

Equation 6.6 

The balanced probability of error, also known as the balanced error rate, is the unweighted average of the 
false negative rate and false positive rate: 

𝑝BE =
1

2
𝑝FP +

1

2
𝑝FN. 

Equation 6.7 

They summarize the basic performance of the decision function. Balancing is useful when there are a 
lot more data points with one label than the other, and you care about each type of error equally. Accuracy, 
the complement of the probability of error: 1 − 𝑝E, and balanced accuracy, the complement of the balanced 
probability of error: 1 − 𝑝BE, are sometimes easier for problem owners to appreciate than error rates.  

The 𝐹1-score, the harmonic mean of 𝑝TP and 𝑝PPV, is an accuracy-like summary measure to 
characterize the quality of a prediction rather than the decision function: 

𝐹1 = 2
𝑝TP𝑝PPV

𝑝TP + 𝑝PPV
. 

Equation 6.8 

Continuing the example from before with 𝑝TP ≈ 0.92 and 𝑝PPV ≈ 0.80, let ThriveGuild’s prior 
probability of receiving applications to be denied according to some ground truth be 𝑝0 = 0.65 and 
applications to be approved be 𝑝1 = 0.35. Then, plugging in to the relevant equations above, you’ll find 
ThriveGuild to have 𝑝E ≈ 0.13, 𝑝BE ≈ 0.11, and 𝐹1 ≈ 0.86. Again, these are reasonable values that may be 
deemed acceptable to the problem owner. 

As the data scientist, you can get pretty far with these abstract TN, FN, TP, and FP events, but they 
have to be put in the context of the problem owner’s goals. ThriveGuild cares about making good bets on 
borrowers so that they are profitable. More generally across real-world applications, error events yield 
significant consequences to affected people including loss of life, loss of liberty, loss of livelihood, etc. 
Therefore, to truly characterize the performance of a decision function, it is important to consider the 
costs associated with the different events. You can capture these costs through a cost function 𝑐(𝑌, 𝑦̂(𝑋)) 
and denote the costs as 𝑐(0,0) = 𝑐00, 𝑐(1,0) = 𝑐10, 𝑐(1,1) = 𝑐11, and 𝑐(0,1) = 𝑐01, respectively. 

Taking costs into account, the characterization of performance for the decision function is known as 
the Bayes risk 𝑅: 
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𝑅 = (𝑐10 − 𝑐00)𝑝0𝑝𝐹𝑃 + (𝑐01 − 𝑐11)𝑝1𝑝𝐹𝑁 + 𝑐00𝑝0 + 𝑐11𝑝1. 

Equation 6.9 

Breaking the equation down, you’ll see that the two error probabilities, 𝑝𝐹𝑃 and 𝑝𝐹𝑁 are the main 
components, multiplied by their relevant prior probabilities and costs. The costs of the non-error events 
appear just multiplied by their costs. The Bayes risk is the performance metric most often used in 
finding optimal decision functions. Actually finding the decision function is known as solving the 
Bayesian detection problem. Eliciting the cost function 𝑐(⋅,⋅) for a given real-world problem from the 
problem owner is part of value alignment, described in Chapter 14. 

A mental model or roadmap, shown in Figure 6.2, to hold throughout the rest of the chapter is that 
the Bayes risk and the Bayesian detection problem are the central concept, and all other concepts are 
related to the central concept in various ways and for various purposes. The terms and concepts that 
have not yet been defined and evaluated are coming up soon. 

 
Figure 6.2. A mental model for different concepts in detection theory surrounding the central concept of Bayes 
risk and Bayesian detection. A diagram with Bayes risk and Bayesian detection at the center and four 
other groups of concepts radiating outwards. False positive rate, false negative rate, error rate, and ac-
curacy are special cases. Receiver operating characteristic, recall-precision curve, and area under the 
curve arise when examining all operating points. Brier score and calibration curve arise in probabilis-
tic risk assessment. False discover rate, false omission rate, and 𝐹1-score relate to performance of pre-
dictions. 

Because getting things right is a good thing, it is often assumed that there is no cost to correct 
decisions, i.e., 𝑐00 = 0 and 𝑐11 = 0, which is also assumed in this book going forward. In this case, the 
Bayes risk simplifies to: 



Detection Theory | 67 

𝑅 = 𝑐10𝑝0𝑝𝐹𝑃 + 𝑐01𝑝1𝑝𝐹𝑁. 

Equation 6.10 

To arrive at this simplified equation, just insert zeros for 𝑐00 and 𝑐11 in Equation 6.9. The Bayes risk with 
𝑐10 = 1 and 𝑐01 = 1 is the probability of error.  

We are implicitly assuming that 𝑐(⋅,⋅) does not depend on 𝑋 except through 𝑦̂(𝑋). This assumption is 
not required, but made for simplicity. You can easily imagine scenarios in which the cost of a decision 
depends on the feature. For example, if one of the features used in the loan approval decision by 
ThriveGuild is the value of the loan, the cost of an error (monetary loss) depends on that feature. 
Nevertheless, for simplicity, we usually make the assumption that the cost function does not explicitly 
depend on the feature value. For example, under this assumption, the cost of a false negative may be 
𝑐10 = 100,000 dollars and the cost of a false positive 𝑐01 = 50,000 dollars for all applicants. 

6.1.3 Accounting for Different Operating Points 
The Bayes risk is all well and good if there is a fixed set of prior probabilities and a fixed set of costs, but 
things change. If the economy improves, potential borrowers might become more reliable in loan 
repayment. If a different problem owner comes in and has a different interpretation of opportunity cost, 
then the cost of false negatives 𝑐10 changes. How should you think about the performance of decision 
functions across different sets of those values, known as different operating points?  

Many decision functions are parameterized by a threshold 𝜂 (including the optimal decision function 
that will be demonstrated in Section 6.2). You can change the decision function to be more or less 
forgiving of false positives or false negatives, but not both at the same time. Varying 𝜂 explores this 
tradeoff and yields different error probability pairs (𝑝FP, 𝑝FN), i.e. different operating points. 
Equivalently, different operating points correspond to different false positive rate and true positive rate 
pairs (𝑝FP, 𝑝TP). The curve traced out on the 𝑝FP–𝑝TP plane as the parameter 𝜂 is varied from zero to 
infinity is the receiver operating characteristic (ROC). The ROC takes values (𝑝FP = 0, 𝑝TP = 0) when 𝜂 → ∞ 
and (𝑝FP = 1, 𝑝TP = 1) when 𝜂 → 0. You can understand this because at one extreme, the decision function 
always says 𝑦̂ = 0; in this case there are no FPs and no TPs. At the other extreme, the decision function 
always says 𝑦̂ = 1; in this case all decisions are either FPs or TPs. 

The ROC is a concave, nondecreasing function illustrated in Figure 6.3. The closer to the top left 
corner it goes, the better. The best ROC for discrimination goes straight up to (0,1) and then makes a 
sharp turn to the right. The worst ROC is the diagonal line connecting (0,0) and (1,1) achieved by random 
guessing. The area under the ROC, also known as the area under the curve (AUC) synthesizes performance 
across all operating points and should be selected as a metric when it is likely that the same threshold-
parameterized decision function will be applied in very different operating conditions. Given the shapes 
of the worst (diagonal line) and best (straight up and then straight to the right) ROC curves, you can see 
that the AUC ranges from 0.5 (area of bottom right triangle) to 1 (area of entire square).4  

 

 
4The recall-precision curve is an alternative to understand performance across operating points. It is the curve traced out on 
the 𝑝PPV–𝑝TP plane starting at (𝑝𝑃𝑃𝑉 = 0, 𝑝𝑇𝑃 = 1) and ending at  (𝑝𝑃𝑃𝑉 = 1, 𝑝𝑇𝑃 = 0). It has a one-to-one mapping with the ROC 
and is more easily understood by some people. Jesse Davis and Mark Goadrich. “The Relationship Between Precision-Recall 
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Figure 6.3. An example receiver operating characteristic (ROC). Accessible caption. A plot with 𝑝TP on the 
vertical axis and 𝑝FP on the horizontal axis. Both axes range from 0 to 1. A dashed diagonal line goes 
from (0,0) to (1,1) and corresponds to random guessing. A solid concave curve, the ROC, goes from 
(0,0) to (1,1) staying above and to the left of the diagonal line. 

 

6.2 The Best That You Can Ever Do 
As the ThriveGuild data scientist, you have given the problem owner an entire menu of basic 
performance measures to select from and indicated when different choices are more and less 
appropriate. The Bayes risk is the most encompassing and most often used performance 
characterization for a decision function. Let’s say that Bayes risk was chosen in the problem 
specification stage of the machine learning lifecycle, including selecting the costs. Now you are in the 
modeling stage and need to figure out if the model is performing well. The best way to do that is to 
optimize the Bayes risk to obtain the best possible decision function with the smallest Bayes risk and 
compare the current model’s Bayes risk to it.  

“The predictability ceiling is often ignored in mainstream ML research. Every 
prediction problem has an upper bound for prediction—the Bayes-optimal 
performance. If you don't have a good sense of what it is for your problem, you are in 
the dark.” 

—Mert R. Sabuncu, computer scientist at Cornell University 

Let us denote the best possible decision function as 𝑦̂∗(⋅) and its corresponding Bayes risk as 𝑅∗. They 
are specified using the minimization of the expected cost: 

 

 
and ROC Curves.” In: Proceedings of the International Conference on Machine Learning. Pittsburgh, Pennsylvania, USA, Jun. 2006, 
pp. 233–240.  
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𝑦̂∗(⋅) = arg min
𝑦̂(⋅)

𝐸[𝑐(𝑌, 𝑦̂(𝑋))], 

Equation 6.11 

where the expectation is over both 𝑋 and 𝑌. Because it achieves the minimal cost, the function 𝑦̂∗(⋅) is 
the best possible 𝑦̂(⋅) by definition. Whatever Bayes risk 𝑅∗ it has, no other decision function can have a 
lower Bayes risk 𝑅.  

We aren’t going to work it out here, but the solution to the minimization problem in Equation 6.11 is 
the Bayes optimal decision function, and takes the following form: 

𝑦̂∗(⋅) = {
0, Λ(𝑥) ≤ 𝜂

1, Λ(𝑥) > 𝜂
 

Equation 6.12 

where Λ(𝑥), known as the likelihood ratio, is defined as: 

Λ(𝑥) =
𝑝𝑋∣𝑌( 𝑥 ∣ 𝑌 = 1 )

𝑝𝑋∣𝑌( 𝑥 ∣ 𝑌 = 0 )
 

Equation 6.13 

and 𝜂, known as the threshold, is defined as: 

𝜂 =
𝑐10𝑝0

𝑐01𝑝1

. 

Equation 6.14 

The likelihood ratio is as its name says: it is the ratio of the likelihood functions. It is a scalar value even 
if the features 𝑋 are multivariate. As the ratio of two non-negative pdf values, it has the range [0, ∞) and 
can be viewed as a random variable. The threshold is made up of both costs and prior probabilities. This 
optimal decision function 𝑦̂∗(⋅) given in Equation 6.12 is known as the likelihood ratio test.  

6.2.1 Example 
As an example, let ThriveGuild’s loan approval decision be determined solely by one feature 𝑋: the 
income of the applicant. Recall that we modeled income to be exponentially-distributed in Chapter 3. 
Specifically, let 𝑝𝑋∣𝑌( 𝑥 ∣ 𝑌 = 1 ) = 0.5𝑒−0.5𝑥 and 𝑝𝑋∣𝑌( 𝑥 ∣ 𝑌 = 0 ) = 𝑒−𝑥, both for 𝑥 ≥ 0. Like earlier in this 
chapter, 𝑝0 = 0.65, 𝑝1 = 0.35, 𝑐10 = 100000, and 𝑐01 = 50000. Then simply plugging in to Equation 6.13, 
you’ll get: 

Λ(𝑥) =
0.5𝑒−0.5𝑥

𝑒−𝑥
= 0.5𝑒0.5𝑥, 𝑥 ≥ 0 

Equation 6.15 
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and plugging in to Equation 6.14, you’ll get: 

𝜂 =
100000

50000

0.65

0.35
= 3.7. 

Equation 6.16 

Plugging these expressions into the Bayes optimal decision function given in Equation 6.12, you’ll get: 

𝑦̂∗(𝑥) = {
0, 0.5𝑒0.5𝑥 ≤ 3.7

1, 0.5𝑒0.5𝑥 > 3.7
 

Equation 6.17 

which can be simplified to: 

𝑦̂∗(𝑥) = {
0, 𝑥 ≤ 4
1, 𝑥 > 4

 

Equation 6.18 

by multiplying both sides of the inequalities in both cases by 2, taking the natural logarithm, and then 
multiplying by 2 again. Applicants with an income less than or equal to 4 are denied and applicants with 
an income greater than 4 are approved. The expected value of 𝑋 ∣ 𝑌 =  1 is 2 and the expected value of 
𝑋 ∣ 𝑌 =  0 is 1. Thus in this example, an applicant's income has to be quite a bit higher than the mean to 
be approved. 

You should use the Bayes-optimal risk 𝑅∗ to lower bound the performance of any machine learning 
classifier that you might try for a given data distribution.5 No matter how hard you work or how creative 
you are, you can never overcome the Bayes limit. So you should be happy if you get close. If the Bayes-
optimal risk itself is too high, then the thing to do is to go back to the data understanding and data 
preparation stages of the machine learning lifecycle and get more informative data.  

 

6.3 Risk Assessment and Calibration 
To approve or to deny, that is the question for ThriveGuild. Or is it? Maybe the question is actually: what 
is the probability that the borrower will default? Maybe the problem is not binary classification, but 
probabilistic risk assessment. It is certainly an option for you, the data scientist, and the problem owner 
to consider during problem specification. Thresholding a probabilistic risk assessment yields a 
classification, but there are a few subtleties for you to weigh.  

 

 
5There are techniques for estimating the Bayes risk of a dataset without having access to its underlying probability distribu-
tion. Ryan Theisen, Huan Wang, Lav R. Varshney, Caiming Xiong, and Richard Socher. “Evaluating State-of-the-Art Classifica-
tion Models Against Bayes Optimality” In: Advances in Neural Information Processing Systems 34 (Dec. 2021).  
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The likelihood ratio ranges from zero to infinity and the threshold value 𝜂 =  1 is optimal for equal 
priors and equal costs. Applying any monotonically increasing function to both the likelihood ratio and 
the threshold still yields a Bayes optimal decision function with the same risk 𝑅∗. That is, 

𝑦̂∗(⋅) = {
0, 𝑔(Λ(𝑥)) ≤ 𝑔(𝜂)

1, 𝑔(Λ(𝑥)) > 𝑔(𝜂)
 

Equation 6.19 

for any monotonically increasing function 𝑔(⋅) is still optimal.  
It is somewhat more natural to think of a score 𝑠(𝑥) to be in the range [0,1] because it corresponds to 

the label values 𝑦 ∈ {0,1} and could also potentially be interpreted as a probability. The score, a 
continuous-valued output of the decision function, can then be thought of as a confidence in the 
prediction and be obtained by applying a suitable 𝑔 function to the likelihood ratio. In this case, 0.5 is the 
threshold for equal priors and costs. Intermediate score values are less confident and extreme score 
values (towards 0 and 1) are more confident. Just as the likelihood ratio may be viewed as a random 
variable, the score may also be viewed as a random variable 𝑆. The Brier score is an appropriate 
performance metric for the continuous-valued output score of the decision function: 

Brier score = 𝐸[(𝑆 − 𝑌)2]. 

Equation 6.20 

It is the mean-squared error of the score S with respect to the true label Y. For a finite number of samples 
{(𝑠1, 𝑦1), … , (𝑠𝑛 , 𝑦𝑛)}, you can compute it as: 

Brier score =
1

𝑛
∑(𝑠𝑗 − 𝑦𝑗)

2
𝑛

𝑗=1

. 

Equation 6.21 

The Brier score decomposes into the sum of two separable components: calibration and refinement.6 
The concept of calibration is that the predicted score corresponds to the proportion of positive true 
labels. For example, a bunch of data points all having a calibrated score of 𝑠 = 0.7 implies that 70% of 
them have true label 𝑦 = 1 and 30% of them have true label 𝑦 = 0. Said another way, perfect calibration 
implies that the probability of the true label 𝑌 being 1 given the predicted score 𝑆 being 𝑠 is the value 𝑠 
itself: 𝑃( 𝑌 = 1 ∣ 𝑆 = 𝑠 ) = 𝑠. Calibration is important for probabilistic risk assessments: a perfectly 
calibrated score can be interpreted as a probability of predicting one class or the other. It is also an 
important concept for evaluating causal inference methods, described in Chapter 8, for algorithmic 
fairness, described in Chapter 10, and for communicating uncertainty, described in Chapter 13. 

 

 
6José Hernández-Orallo, Peter Flach, and Cèsar Ferri. “A Unified View of Performance Metrics: Translating Threshold Choice 
into Expected Classification Loss.” In: Journal of Machine Learning Research 13 (Oct. 2012), pp. 2813–2869. 
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Since any monotonically increasing transformation 𝑔(⋅) can be applied to a decision function 
without changing its ability to discriminate, you can improve the calibration of a decision function by 
finding a better 𝑔(⋅). The calibration loss quantitatively captures how close a decision function is to 
perfect calibration. The refinement loss is a sort of variance of how tightly the true labels distribute 
around a given score. For {(𝑠1, 𝑦1), … , (𝑠𝑛 , 𝑦𝑛)} that have been sorted by their score values and binned into 
𝑘 groups {ℬ1, … , ℬ𝑘} with average values {(𝑠1̅, 𝑦̅1), … , (𝑠𝑘̅ , 𝑦̅𝑘)} within the bins 

calibration loss =
1

𝑛
∑‖ℬ𝑖‖

𝑘

𝑖=1

(𝑠𝑖̅ − 𝑦̅𝑖)2 

refinement loss =
1

𝑛
∑‖ℬ𝑖‖

𝑘

𝑖=1

𝑦̅𝑖(1 − 𝑦̅𝑖). 

Equation 6.22 

As stated earlier, the sum of the calibration loss and refinement loss is the Brier score.  
A calibration curve, also known as a reliability diagram, shows the (𝑠𝑘̅ , 𝑦̅𝑘) values as a plot. One 

example is shown in Figure 6.4. The closer to a straight diagonal from (0,0) to (1,1), the better. Plotting 
this curve is a good diagnostic tool for you to understand the calibration of a decision function. 

   
Figure 6.4. An example calibration curve. Accessible caption. A plot with 𝑃(𝑌 = 1) on the vertical axis and 
𝑠 on the horizontal axis. Both axes range from 0 to 1. A dashed diagonal line goes from (0,0) to (1,1) and 
corresponds to perfect calibration. A solid S-shaped curve, the calibration curve, goes from (0,0) to 
(1,1) starting below and to the right of the diagonal line before crossing over to being above and to the 
left of the diagonal line. 

 

6.4 Summary 
▪ Four possible events result from binary decisions: false negatives, true negatives, false positives, 

and true positives.  

▪ Different ways to combine the probabilities of these events lead to classifier performance metrics 
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appropriate for different real-world contexts.  

▪ One important one is Bayes risk: the combination of the false negative probability and false 
positive probability weighted by both the costs of those errors and the prior probabilities of the 
labels. It is the basic basic performance measure for the first attribute of safety and 
trustworthiness. 

▪ Detection theory, the study of optimal decisions, which provides fundamental limits to how well 
machine learning models may ever perform is a tool for you to assess the basic performance of 
your models. 

▪ Decision functions may output continuous-valued scores rather than only hard, zero or one, 
decisions. Scores indicate confidence in a prediction. Calibrated scores are those for which the 
score value is the probability of a sample belonging to a label class. 


