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2  
Machine Learning Lifecycle 

Imagine that you are a project manager on the innovation team of m-Udhār Solar, a (fictional) pay-as-
you-go solar energy provider to poor rural villages that is struggling to handle a growing load of 
applications. The company is poised to expand from installing solar panels in a handful of pilot districts 
to all the districts in the state, but only if it can make loan decisions for 25 times as many applications 
per day with the same number of loan officers. You think machine learning may be able to help.  

Is this a problem to address with machine learning? How would you begin the project? What steps 
would you follow? What roles would be involved in carrying out the steps? Which stakeholders’ buy-in 
would you need to win? And importantly, what would you need to do to ensure that the system is 
trustworthy? Making a machine learning system trustworthy should not be an afterthought or add-on, 
but should be part of the plan from the beginning. 

The end-to-end development process or lifecycle involves several steps:  

1. problem specification, 

2. data understanding, 

3. data preparation, 

4. modeling, 

5. evaluation, and 

6. deployment and monitoring. 

Narrow definitions consider only the modeling step to be the realm of machine learning. They consider 
the other steps to be part of the broader endeavor of data science and engineering. Most books and 
research on machine learning are similarly focused on the modeling stage. However, you cannot really 
execute the development and deployment of a trustworthy machine learning system without focusing 
on all parts of the lifecycle. There are no shortcuts. This chapter sketches out the master plan. 
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2.1 A Mental Model for the Machine Learning Lifecycle 
The six steps of the machine learning lifecycle given above, also illustrated in Figure 2.1, are codified in 
the Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology. This is the mental model 
to keep in mind of how machine learning systems should be developed and deployed. Although the flow 
largely proceeds sequentially through the steps, there are several opportunities to go back and redo 
earlier steps. This description is stylized; even good examples of real-world lifecycles are messier, but 
the main idea continues to hold. 

 
Figure 2.1. Steps of the machine learning lifecycle codified in CRISP-DM. Different personas participate in differ-
ent phases of the lifecycle. Accessible caption. A series of six steps arranged in a circle: (1) problem speci-
fication; (2) data understanding; (3) data preparation; (4) modeling; (5) evaluation; (6) deployment and 
monitoring. There are some backward paths: from data understanding to problem specification; from 
modeling to data preparation; from evaluation to problem specification. Five personas are associated 
with different steps: problem owner with steps 1–2; data engineer with steps 2–3; data scientist with 
steps 1–4; model validator with step 5; ML operations engineer with step 6. A diverse stakeholders per-
sona is on the side overseeing all steps. 

Because the modeling stage is often put on a pedestal, there is a temptation to use the analogy of an 
onion in working out the project plan: start with the core modeling, work your way out to data 
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understanding/preparation and evaluation, and then further work your way out to problem specification 
and deployment/monitoring. This analogy works well for a telecommunications system for example,1 
both pedagogically and in how the technology is developed, but a sequential process is more appropriate 
for a trustworthy machine learning system. Always start with understanding the use case and specifying 
the problem. 

“People are involved in every phase of the AI lifecycle, making decisions about which 
problem to address, which data to use, what to optimize for, etc.”  

—Jenn Wortman Vaughan, research scientist at Microsoft 

The different steps are carried out by different parties with different personas including problem 
owners, data engineers, data scientists, model validators, and machine learning (ML) operations 
engineers. Problem owners are primarily involved with problem specification and data understanding. 
Data engineers work on data understanding and data preparation. Data scientists tend to play a role in 
all of the first four steps. Model validators perform evaluation. ML operations engineers are responsible 
for deployment and monitoring. 

Additional important personas in the context of trustworthiness are the potential trustors of the 
system: human decision makers being supported by the machine learning model (m-Udhār loan 
officers), affected parties about whom the decisions are made (rural applicants; they may be members 
of marginalized groups), regulators and policymakers, and the general public. Each stakeholder has 
different needs, concerns, desires, and values. Systems must meet those needs and align with those 
values to be trustworthy. Multi-stakeholder engagement is essential and cannot be divorced from the 
technical aspects of design and development. Documenting and transparently reporting the different 
steps of the lifecycle help build trust among stakeholders.  

 

2.2 Problem Specification 
The first step when starting the development of a machine learning system is to define the problem. 
What is the problem owner hoping to accomplish and why? The director of m-Udhār Solar wishes to 
automate a task that is cumbersome and costly for people to do. In other scenarios, problem owners may 
want to augment the capabilities of human decision makers to improve the quality of their decisions. 
They may have other goals altogether. In some cases, the problem should not even be solved to begin 
with, because doing so may cause or exacerbate societal harms and breach the lines of ethical behavior.2 
A harm is an outcome with a severe unwanted effect on a person’s life. This definition of harm is made 
more precise in Chapter 3. Let’s repeat this important point: do not solve problems that would lead to 
harms for someone or some group. 

 

 
1C. Richard Johnson, Jr. and William A. Sethares. Telecommunication Breakdown: Concepts of Communication Transmitted via Soft-
ware-Defined Radio. Upper Saddle River, New Jersey, USA: Prentice Hall, 2003.  
2Andrew D. Selbst, danah boyd, Sorelle A. Friedler, Suresh Venkatasubramanian, and Janet Vertesi. “Fairness and Abstraction 
in Sociotechnical Systems.” In: Proceedings of the ACM Conference on Fairness, Accountability, and Transparency. Barcelona, Spain, 
Jan. 2020, pp. 59–68. 
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“We all have a responsibility to ask not just, ‘can we do this?’, but ‘should we do this?’” 

—Kathy Baxter, ethical AI practice architect at Salesforce 

Problem identification and understanding is best done as a dialogue between problem owners and 
data scientists because problem owners might not have the imagination of what is possible through 
machine learning and data scientists do not have a visceral understanding of the pain points that 
problem owners are facing. Problem owners should also invite representatives of marginalized groups 
for a seat at the problem understanding table to voice their pain points.3 Problem identification is 
arguably the most important and most difficult thing to do in the entire lifecycle. An inclusive design 
process is imperative. Finding the light at the end of the tunnel is actually not that hard, but finding the 
tunnel can be very hard. The best problems to tackle are ones that have a benefit to humanity, like 
helping light up the lives and livelihoods of rural villagers. 

Once problem owners have identified a problem worth solving, they need to specify metrics of 
success. Being a social enterprise, the metric for m-Udhār Solar is number of households served with 
acceptable risk of defaulting. In general, these metrics should be in real-world terms relevant to the use 
case, such as lives saved, time reduced, or cost avoided.4 The data scientist and problem owner can then 
map the real-world problem and metrics to machine learning problems and metrics. This specification 
should be as crisp as possible, including both the quantities to be measured and their acceptable values. 

The goals need not be specified only as traditional key performance indicators, but can also include 
objectives for maintenance of performance across varying conditions, fairness of outcomes across 
groups and individuals, resilience to threats, or number of insights provided to users. Defining what is 
meant by fairness and specifying a threat model are part of this endeavor. For example, m-Udhār aims 
not to discriminate by caste or creed. Again, these real-world goals must be made precise through a 
conversation between problem owners, diverse voices, and data scientists. The process of eliciting 
objectives is known as value alignment.  

One important consideration in problem scoping is resource availability, both in computing and 
human resources. A large national or multinational bank will have many more resources than m-Udhār 
Solar. A large technology company will have the most of all. What can reasonably be accomplished is 
gated by the skill of the development team, the computational power for training models and evaluating 
new samples, and the amount of relevant data. 

Machine learning is not a panacea. Even if the problem makes sense, machine learning may not be 
the most appropriate solution to achieve the metrics of success. Oftentimes, back-of-the-envelope 
calculations can indicate the lack of fit of a machine learning solution before other steps are undertaken. 
A common reason for machine learning to not be a viable solution is lack of appropriate data, which 
brings us to the next step: data understanding. 

 

 

 
3Meg Young, Lassana Magassa, and Batya Friedman. “Toward Inclusive Tech Policy Design: A Method for Underrepresented 
Voices to Strengthen Tech Policy Documents.” In: Ethics and Information Technology 21.2 (Jun. 2019), pp. 89–103. The input of 
diverse stakeholders, especially those from marginalized groups, should be monetarily compensated.  
4Kiri L. Wagstaff. “Machine Learning that Matters.” In: Proceedings of the International Conference on Machine Learning. Edinburgh, 
Scotland, UK, Jun.–Jul. 2012, pp. 521–528.  
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2.3 Data Understanding 
Once the problem has been identified and specified, a relevant dataset must be collected. In instances 
where the problem is to automate an existing decision-making process, identifying the relevant dataset 
is fairly straightforward. M-Udhār’s dataset consists of attributes and other inputs that loan officers used 
to make decisions in the past, along with their decisions. The inputs constitute the features and the 
historical decisions constitute the labels for a supervised machine learning task. But there may also be 
data that loan officers did not use that could be leveraged by a machine learning system. A promise of 
so-called ‘big data’ is the inclusion of large sets of attributes, many weakly correlated to the label, that 
would overwhelm a person but not a machine. For the machine learning system to make even better 
decisions than people, true outcomes rather than decisions should ideally be the labels, e.g. whether an 
applicant defaulted on their loan in the future rather than the approval decision. 

Machine learning can also be applied in use cases that are new processes for an organization and no 
exact historical data exists. Here, proxy data must be identified. For example, a health system may wish 
to start offering home nursing care to indisposed individuals proactively, but may not have data directly 
applicable for understanding this decision. Data from previous interactions of patients with the health 
system may be used as a proxy. In other cases, it may be that new data must be collected. In yet other 
cases, it may be that relevant data neither exists nor can be collected, and the problem must be specified 
differently.  

Once a dataset has been identified or collected, it is critical for the data scientist and data engineer 
to understand the semantics of the various features and their values by consulting the problem owner 
and other subject matter experts as well as by consulting a data dictionary (a document describing the 
features) if one exists. They should also conduct exploratory data analysis and visualization. This 
understanding can help identify problems in the data such as leakage, the presence of information in the 
features helpful in predicting the label that would not be available in new inputs to a deployed system, 
and various forms of bias. One important form of bias is social bias in which a proxy for the label does not 
well-reflect the true label of interest. For example, using past number of doctor visits may not be a good 
proxy of how sick an individual is if there are socioeconomic reasons why some people visit the doctor 
more than others at the same level of ill health. A similar social bias stems from prejudice: labels from 
historical human decisions contain systematic differences across groups. Other important biases 
include population bias: the dataset underrepresents certain inputs and overrepresents others, and 
temporal bias: issues stemming from the timing of data collection.  

The data understanding stage also requires the development team to consider data usage issues. 
Just because features are available (and may even improve the performance of a model), that does not 
mean that they can and should be used. Use of certain features may be prohibited by law, be unethical, 
or may not have appropriate consent in place. For example, m-Udhār Solar may have the surname of 
the applicant available, which indicates the applicant’s caste and religion and may even help a model 
achieve better performance, but it is unethical to use. The use of other features may pose privacy risks. 
A more detailed treatment of data-related issues is presented in Part 2 of the book. 
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2.4 Data Preparation 
Data integration, data cleaning, and feature engineering constitute the data preparation step of the 
lifecycle. The end goal of this stage is a final training dataset to be used in modeling. Starting from the 
insights gleaned in the data understanding phase, data integration starts by extracting, transforming, 
and loading (ETL) data from disparate relevant databases and other data sources. Next, the data from 
the disparate sources is joined into a single dataset that is maintained in a format amenable to 
downstream modeling. This step is most challenging when dealing with humongous data sources. 

Data cleaning is also based on data understanding from the previous stage. Some of the key 
components of data cleaning are: 

▪ filling in missing values (known as imputation) or discarding them,  

▪ binning continuous feature values to account for outliers, 

▪ grouping or recoding categorical feature values to deal with rarely occurring values or to combine 
semantically similar values, and 

▪ dropping features that induce leakage or should not be used for legal, ethical, or privacy reasons. 

Feature engineering is mathematically transforming features to derive new features, including through 
interactions of several raw features. Apart from the initial problem specification, feature engineering is 
the point in the lifecycle that requires the most creativity from data scientists. Data cleaning and feature 
engineering require the data engineer and data scientist to make many choices that have no right or 
wrong answer. Should m-Udhār’s data engineer and data scientist group together any number of 
motorcycles owned by the household greater than zero? How should they encode the profession of the 
applicant? The data scientist and data engineer should revisit the project goals and continually consult 
with subject matter experts and stakeholders with differing perspectives to help make appropriate 
choices. When there is ambiguity, they should work towards safety, reliability, and aligning with elicited 
values. 

 

2.5 Modeling 
The modeling step receives a clear problem specification (including metrics of success) and a fixed, 
clean training dataset. A mental model for trustworthy modeling includes three main parts: 

1. pre-processing the training data, 

2. training the model with a machine learning algorithm, and 

3. post-processing the model’s output predictions. 

This idea is diagrammed in Figure 2.2. Details of this step will be covered in depth throughout the book, 
but an overview is provided here. 
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Figure 2.2. Main parts of trustworthy machine learning modeling. Distribution shift, unfairness, adversarial at-
tacks, and lack of explainability can be mitigated using the various techniques listed below each part. Details of 
these methods are presented in the remainder of the book. Accessible caption. A block diagram with a train-
ing dataset as input to a pre-processing block with a pre-processed dataset as output. The pre-pro-
cessed dataset is input to a model training block with an initial model as output. The initial model is 
input to a post-processing block with a final model as output. The following techniques are examples of 
pre-processing: domain adaptation (distribution shift); bias mitigation pre-processing (unfairness); 
data sanitization (adversarial attacks); disentangled representation (lack of explainability). The follow-
ing techniques are examples of model training: domain robustness (distribution shift); bias mitigation 
in-processing (unfairness); smoothing/adversarial training (adversarial attacks); directly interpretable 
models (lack of explainability). The following techniques are examples of post-processing: bias mitiga-
tion post-processing (unfairness); patching (adversarial attacks); post hoc explanations (lack of ex-
plainability). 

Different from data preparation, data pre-processing is meant to alter the statistics or properties of the 
dataset to achieve certain goals. Domain adaptation overcomes a lack of robustness to changing 
environments, including temporal bias. Bias mitigation pre-processing changes the dataset to overcome 
social bias and population bias. Data sanitization aims to remove traces of data poisoning attacks by 
malicious actors. Learning disentangled representations overcomes a lack of human interpretability of the 
features. All should be performed as required by the problem specification. 

The main task in the modeling step is to use an algorithm that finds the patterns in the training 
dataset and generalizes from them to fit a model that will predict labels for new unseen data points with 
good performance. (The term predict does not necessarily imply forecasting into the future, but simply 
refers to providing a guess for an unknown value.) There are many different algorithms for fitting 
models, each with a different inductive bias or set of assumptions it uses to generalize. Many machine 
learning algorithms explicitly minimize the objective function that was determined in the problem 
specification step of the lifecycle. Some algorithms minimize an approximation to the specified 
objective to make the mathematical optimization easier. This common approach to machine learning is 
known as risk minimization.  

The no free lunch theorem of machine learning says that there is no one best machine learning 
algorithm for all problems and datasets.5 Which one works best depends on the characteristics of the 

 

 
5David H. Wolpert. “The Lack of A Priori Distinctions Between Learning Algorithms.” In: Neural Computation 8.7 (Oct. 1996), pp. 
1341–1390.  
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dataset. Data scientists try out several different methods, tune their parameters, and see which one 
performs best empirically. The empirical comparison is conducted by randomly splitting the training 
dataset into a training partition on which the model is fit and a testing partition on which the model’s 
performance is validated. The partitioning and validation can be done once, or they can be done several 
times. When done several times, the procedure is known as cross-validation; it is useful because it 
characterizes the stability of the results. Cross-validation should be done for datasets with a small 
number of samples.  

The basic machine learning algorithm can be enhanced in several ways to satisfy additional 
objectives and constraints captured in the problem specification. One way to increase reliability across 
operating conditions is known as domain robustness. Machine learning algorithms that reduce unwanted 
biases are known as bias mitigation in-processing. One example category of methods for defending against 
data poisoning attacks is known as smoothing. A defense against a different kind of adversarial attack, 
the evasion attack, is adversarial training. Certain machine learning algorithms produce models that are 
simple in form and thus directly interpretable and understandable to people. Once again, all of these 
enhancements should be done according to the problem specification. 

Post-processing rules change the predicted label of a sample or compute additional information to 
accompany the predicted label. Post-processing methods can be divided into two high-level categories: 
open-box and closed-box. Open-box methods utilize information from the model such as its parameters 
and functions of its parameters. Closed-box methods can only see the output predictions arising from 
given inputs. Open-box methods should be used if possible, such as when there is close integration of 
model training and post-processing in the system. In certain scenarios, post-processing methods, also 
known as post hoc methods, are isolated from the model for logistical or security reasons. In these 
scenarios, only closed-box methods are tenable. Post-processing techniques for increasing reliability, 
mitigating unwanted biases, defending against adversarial attacks, and generating explanations should 
be used judiciously to achieve the goals of the problem owner. For example, post hoc explanations are 
important to provide to m-Udhār Solar’s loan officers so that they can better discuss the decision with 
the applicant. 

The specification of certain use cases calls for causal modeling: finding generalizable instances of 
cause-and-effect from the training data rather than only correlative patterns. These are problems in 
which input interventions are meant to change the outcome. For example, when coaching an employee 
for success, it is not good enough to identify the pattern that putting in extra hours is predictive of a 
promotion. Good advice represents a causal relationship: if the employee starts working extra hours, 
then they can expect to be promoted. It may be that there is a common cause (e.g. conscientiousness) 
for both doing quality work and working extra hours, but it is only doing quality work that causes a 
promotion. Working long hours while doing poor quality work will not yield a promotion; causal 
modeling will show that. 

 

2.6 Evaluation 
Once m-Udhār’s data scientists have a trained and tested model that they feel best satisfies the problem 
owner’s requirements, they pass it on to model validators. A model validator conducts further 
independent testing and evaluation of the model, often with a completely separate held-out dataset that 
the data scientist did not have access to. It is important that the held-out set not have any leakage from 
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the training set. To stress-test the model’s safety and reliability, the model validator can and should 
evaluate it on data collected under various conditions and data generated to simulate unlikely events. 

The model validator persona is part of model risk management. Model risk is the chance of decisions 
supported by statistical or machine learning models yielding gross harms. Issues can come from any of 
the preceding lifecycle steps: from bad problem specification to data quality problems to bugs in the 
machine learning algorithm software. Even this late in the game, it is possible that the team might have 
to start over if issues are discovered. It is only after the model validator signs off on the model that it is 
put into production. Although not standard practice yet in machine learning, this ‘signing off’ can be 
construed as a declaration of conformity, a document often used in various industries and sectors 
certifying that a product is operational and safe. 

 

2.7 Deployment and Monitoring 
The solar panels are loaded on the truck and the electricians are just waiting to find out which 
households to install them at. The last step on the long road to the productive use of the machine learning 
system is finally here! The ML operations engineer takes center stage to deploy the model. Starting with 
a certified model, there are still questions to be answered. What infrastructure will bring new data to the 
model? Will predictions be made in batch or one-by-one? How much latency is allowable? How will the 
user interact with the system? The engineer works with different stakeholders to answer the questions 
and implements the infrastructure to meet the needs, resulting in a deployed model. 

Important for making the model trustworthy, the ML operations engineer must also implement tools 
to monitor the model’s performance to ensure it is operating as expected. As before, performance 
includes all relevant metrics of success in the problem specification, not only traditional key 
performance indicators. The performance of trained models can degrade over time as the incoming data 
statistically drifts away from the training data. If drift is detected, the monitoring system should notify 
the development team and other relevant stakeholders. All four attributes of trustworthiness (basic 
performance, reliability, human interaction, and aligned purpose) permeate throughout the machine 
learning lifecycle and must be accounted for in the development, deployment, and monitoring plan from 
the beginning to the end. M-Udhār Solar has now deployed its loan origination automation system and 
is able to easily serve applicants not just in one entire state, but a few neighboring ones as well. 
 

2.8 Summary 
▪ The machine learning lifecycle consists of six main sequential steps: (1) problem specification, 

(2) data understanding, (3) data preparation, (4) modeling, (5) evaluation, and (6) deployment 
and monitoring, performed by people in different roles.  

▪ The modeling step has three parts: (1) pre-processing, (2) model training, and (3) post-
processing. 

▪ To operationalize a machine learning system, plan for the different attributes of trustworthiness 
starting from the first step of problem specification. Considerations beyond basic performance 
should not be sprinkled on at the end like pixie dust, but developed at every step of the way with 
input from diverse stakeholders, including affected users from marginalized groups. 


